Abstract

A derivative-based uncertainty quantification (UQ) method called HYPAD-UQ that utilizes sensitivities from a computational model was developed to approximate the statistical moments and Sobol' indices of the model output. Hypercomplex automatic differentiation (HYPAD) was used as a means to obtain accurate high-order partial derivatives from computational models such as finite element analyses. These sensitivities are used to construct a surrogate model of the output using a Taylor series expansion and subsequently used to estimate statistical moments (mean, variance, skewness, and kurtosis) and Sobol' indices using algebraic expansions. The uncertainty in a transient linear heat transfer analysis was quantified with HYPAD-UQ using first-order through seventh-order partial derivatives with respect to seven random variables encompassing material properties, geometry, and boundary conditions. Random sampling of the analytical solution and the regression-based stochastic perturbation finite element method were also conducted to compare accuracy and computational cost. The results indicate that HYPAD-UQ has superior accuracy for the same computational effort compared to the regression-based stochastic perturbation finite element method. Sensitivities calculated with HYPAD can allow higher-order Taylor series expansions to be an effective and practical UQ method.

References

1.
Xiu
,
D.
,
2010
,
Numerical Methods for Stochastic Computations
,
Princeton University Press
,
Princeton, NJ
.
2.
DiazDelaO
,
F. A.
, and
Adhikari
,
S.
,
2011
, “
Gaussian Process Emulators for the Stochastic Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
87
(
6
), pp.
521
540
.10.1002/nme.3116
3.
Tukey
,
J. W.
,
1957
, “
The Propagation of Errors, Fluctuations, and Tolerances Basic Generalized Formulas
,” Statistical Techniques Research Group, Princeton, NJ, Technical Report No. 10.
4.
Kaminski
,
M.
,
2013
,
The Stochastic Perturbation Method for Computational Mechanics
,
Wiley
,
Hoboken, NJ
.
5.
Kaminski
,
M.
,
2015
, “
On the Dual Iterative Stochastic Perturbation-Based Finite Element Method in Solid Mechanics With Gaussian Uncertainties
,”
Int. J. Numer. Methods Eng.
,
104
(
11
), pp.
1038
1060
.10.1002/nme.4976
6.
Cacuci
,
D. G.
,
2003
,
Sensitivity and Uncertainty Analysis
, Vol.
1
,
CRC Press
,
Boca Raton, FL
.
7.
Paudel
,
A.
,
Gupta
,
S.
,
Thapa
,
M.
,
Mulani
,
S. B.
, and
Walters
,
R. W.
,
2022
, “
Higher-Order Taylor Series Expansion for Uncertainty Quantification With Efficient Local Sensitivity
,”
Aerosp. Sci. Technol.
,
126
, p.
107574
.10.1016/j.ast.2022.107574
8.
Hien
,
T. D.
, and
Kleiber
,
M.
,
1997
, “
Stochastic Finite Element Modelling in Linear Transient Heat Transfer
,”
Comput. Methods Appl. Mech. Eng.
,
144
(
1–2
), pp.
111
124
.10.1016/S0045-7825(96)01168-1
9.
Tsay
,
J. J.
, and
Arora
,
J. S.
,
1990
, “
Nonlinear Structural Design Sensitivity Analysis for Path Dependent Problems. Part 1: General Theory
,”
Comput. Methods Appl. Mech. Eng.
,
81
(
2
), pp.
183
208
.10.1016/0045-7825(90)90109-Y
10.
Cacuci
,
D. G.
, and
Favorite
,
J. A.
,
2018
, “
Second-Order Sensitivity Analysis of Uncollided Particle Contributions to Radiation Detector Responses
,”
Nucl. Sci. Eng.
,
190
(
2
), pp.
105
133
.10.1080/00295639.2018.1426899
11.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
2007
,
Numerical Recipes: The Art of Scientific Computing
, 3rd ed.,
Cambridge University Press
, Cambridge, UK.
12.
Squire
,
W.
, and
Trapp
,
G.
,
1998
, “
Using Complex Variables to Estimate Derivatives of Real Functions
,”
SIAM Rev.
,
40
(
1
), pp.
110
112
.10.1137/S003614459631241X
13.
Fielder
,
R.
,
Millwater
,
H.
,
Montoya
,
A.
, and
Golden
,
P.
,
2019
, “
Efficient Estimate of Residual Stress Variance Using Complex Variable Finite Element Methods
,”
Int. J. Pressure Vessels Piping
,
173
, pp.
101
113
.10.1016/j.ijpvp.2019.05.004
14.
Aguirre-Mesa
,
A. M.
,
Garcia
,
M. J.
, and
Millwater
,
H.
,
2020
, “
Multiz: A Library for Computation of High-Order Derivatives Using Multicomplex or Multidual Numbers
,”
ACM Trans. Math. Software
,
46
(
3
), pp.
1
30
.10.1145/3378538
15.
Aristizabal
,
M.
,
Ramirez-Tamayo
,
D.
,
Garcia
,
M.
,
Aguirre-Mesa
,
A.
,
Montoya
,
A.
, and
Millwater
,
H.
,
2019
, “
Quaternion and Octonion-Based Finite Element Analysis Methods for Computing Multiple First Order Derivatives
,”
J. Comput. Phys.
,
397
, p.
108831
.10.1016/j.jcp.2019.07.030
16.
Cano
,
M. A.
,
2020
, “
Order Truncated Imaginary Algebra for Computation of Multivariable High-Order Derivatives in Finite Element Analysis
,” Ph.D. thesis,
Universidad EAFIT, Medellín, Colombia
.
17.
Lantoine
,
G.
,
Russell
,
R. P.
, and
Dargent
,
T.
,
2012
, “
Using Multicomplex Variables for Automatic Computation of High-Order Derivatives
,”
ACM Trans. Math. Software
,
38
(
3
), pp.
1
21
.10.1145/2168773.2168774
18.
Fike
,
J. A.
, and
Alonso
,
J. J.
,
2011
, “
The Development of Hyper-Dual Numbers for Exact Second-Derivative Calculations
,”
AIAA
Paper No. 2011-886. 10.2514/6.2011-886
19.
Aguirre-Mesa
,
A. M.
,
Ramirez-Tamayo
,
D.
,
Garcia
,
M. J.
,
Montoya
,
A.
, and
Millwater
,
H.
,
2019
, “
A Stiffness Derivative Local Hypercomplex-Variable Finite Element Method for Computing the Energy Release Rate
,”
Eng. Fract. Mech.
,
218
, p.
106581
.10.1016/j.engfracmech.2019.106581
20.
Aguirre-Mesa
,
A. M.
,
Garcia
,
M. J.
,
Aristizabal
,
M.
,
Wagner
,
D.
,
Ramirez-Tamayo
,
D.
,
Montoya
,
A.
, and
Millwater
,
H.
,
2021
, “
A Block Forward Substitution Method for Solving the Hypercomplex Finite Element System of Equations
,”
Comput. Methods Appl. Mech. Eng.
,
387
, p.
114195
.10.1016/j.cma.2021.114195
21.
Kaminski
,
M.
,
2022
, “
Uncertainty Analysis in Solid Mechanics With Uniform and Triangular Distributions Using Stochastic Perturbation-Based Finite Element Method
,”
Finite Elem. Anal. Des.
,
200
, p.
103648
.10.1016/j.finel.2021.103648
22.
Sobol
,
I.
,
1993
, “
Sensitivity Estimates for Nonlinear Mathematical Models
,”
Math. Modell. Comput. Exp.
,
1
(
4
), pp.
407
414
.
23.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.10.1016/j.ress.2007.04.002
24.
Carneiro
,
G. D. N.
, and
Antonio
,
C. C.
,
2019
, “
Sobol' Indices as Dimension Reduction Technique in Evolutionary-Based Reliability Assessment
,”
Eng. Comput.
,
37
(
1
), pp.
368
398
.10.1108/EC-03-2019-0113
25.
Borgonovo
,
E.
, and
Smith
,
C. L.
,
2011
, “
A Study of Interactions in the Risk Assessment of Complex Engineering Systems: An Application to Space PSA
,”
Oper. Res.
,
59
(
6
), pp.
1461
1476
.10.1287/opre.1110.0973
26.
Sakata
,
S.-I.
, and
Torigoe
,
I.
,
2015
, “
A Successive Perturbation-Based Multiscale Stochastic Analysis Method for Composite Materials
,”
Finite Elem. Anal. Des.
,
102–103
, pp.
74
84
.10.1016/j.finel.2015.05.001
27.
Bouhlel
,
M. A.
,
Hwang
,
J. T.
,
Bartoli
,
N.
,
Lafage
,
R.
,
Morlier
,
J.
, and
Martins
,
J. R. R. A.
,
2019
, “
A Python Surrogate Modeling Framework With Derivatives
,”
Adv. Eng. Software
,
135
, p.
102662
.10.1016/j.advengsoft.2019.03.005
28.
Guo
,
L.
,
Narayan
,
A.
, and
Zhou
,
T.
,
2018
, “
A Gradient Enhanced l1-Minimization for Sparse Approximation of Polynomial Chaos Expansions
,”
J. Comput. Phys.
,
367
, pp.
49
64
.10.1016/j.jcp.2018.04.026
29.
Hart
,
J.
,
Waanders
,
B. V. B.
, and
Herzog
,
R.
,
2019
, “
Hyper-Differential Sensitivity Analysis of Uncertain Parameters in PDE-Constrained Optimization
,”
Int. J. Uncertainty Quantif.
, 10(3), pp.
225
248
.10.1615/Int.J.UncertaintyQuantification.2020032480
30.
Rabitz
,
H.
, and
Aliş
,
Ö. F.
,
1999
, “
General Foundations of High-Dimensional Model Representations
,”
J. Math. Chem.
,
25
(
2/3
), pp.
197
233
.10.1023/A:1019188517934
31.
Sobol
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1
), pp.
271
280
.10.1016/S0378-4754(00)00270-6
32.
Alvarez
,
E. J.
, and
Ning
,
A.
,
2020
, “
High-Fidelity Modeling of Multirotor Aerodynamic Interactions for Aircraft Design
,”
AIAA J.
,
58
(
10
), pp.
4385
4400
.10.2514/1.J059178
33.
Luo
,
R.
,
Xu
,
W.
,
Shao
,
T.
,
Xu
,
H.
, and
Yang
,
Y.
,
2019
, “
Accelerated Complex-Step Finite Difference for Expedient Deformable Simulation
,”
ACM Trans. Graphics
,
38
(
6
), pp.
1
16
.10.1145/3355089.3356493
34.
Olivares
,
H.
,
Porth
,
O.
,
Davelaar
,
J.
,
Most
,
E. R.
,
Fromm
,
C. M.
,
Mizuno
,
Y.
,
Younsi
,
Z.
, and
Rezzolla
,
L.
,
2019
, “
Constrained Transport and Adaptive Mesh Refinement in the Black Hole Accretion Code
,”
Astron. Astrophys.
,
629
, p.
A61
.10.1051/0004-6361/201935559
35.
Martins
,
J. R. R. A.
,
Sturdza
,
P.
, and
Alonso
,
J. J.
,
2003
, “
The Complex-Step Derivative Approximation
,”
ACM Trans. Math. Software
,
29
(
3
), pp.
245
262
.10.1145/838250.838251
36.
Oberbichler
,
T.
, Wuchner, R., and Bletzinger, K.-U., 2021, “
Efficient Computation of Nonlinear Isogeometric Elements Using the Adjoint Method and Algorithmic Differentiation
,”
Comput. Methods Appl. Mech. Eng.
, 381, p.
113817
.10.1016/j.cma.2021.113817
37.
Casado
,
J. M. V.
, and
Hewson
,
R.
,
2020
, “
Algorithm 1008: Multicomplex Number Class for Matlab, With a Focus on the Accurate Calculation of Small Imaginary Terms for Multicomplex Step Sensitivity Calculations
,”
ACM Trans. Math. Software
,
46
(
2
), pp.
1
26
.10.1145/3378542
38.
Revels
,
J.
,
Lubin
,
M.
, and
Papamarkou
,
T.
,
2016
, “
Forward-Mode Automatic Differentiation in Julia
,” e-print
arXiv:1607.07892
.https://arxiv.org/abs/1607.07892
39.
Balcer
,
M. R.
,
Millwater
,
H.
, and
Favorite
,
J. A.
,
2021
, “
Multidual Sensitivity Method in Ray-Tracing Transport Simulations
,”
Nucl. Sci. Eng.
,
195
(
9
), pp.
907
936
.10.1080/00295639.2021.1883949
40.
Fish
,
J.
, and
Belytschko
,
T.
,
2007
,
A First Course in Finite Elements
,
Wiley
, Chichester, UK.
41.
Ramirez-Tamayo
,
D.
,
Soulami
,
A.
,
Gupta
,
V.
,
Restrepo
,
D.
,
Montoya
,
A.
, and
Millwater
,
H.
,
2021
, “
A Complex-Variable Cohesive Finite Element Subroutine to Enable Efficient Determination of Interfacial Cohesive Material Parameters
,”
Eng. Fract. Mech.
,
247
, p.
107638
.10.1016/j.engfracmech.2021.107638
42.
Montoya
,
A.
,
Fielder
,
R.
,
Gomez-Farias
,
A.
, and
Millwater
,
H.
,
2015
, “
Finite Element Sensitivity for Plasticity Using Complex Variable Methods
,”
J. Eng. Mech.
,
141
(
2
), p.
04014118
.10.1061/(ASCE)EM.1943-7889.0000837
43.
Kraus
,
A. D.
,
Aziz
,
A.
, and
Welty
,
J.
,
2001
,
Transient Heat Transfer in Extended Surfaces
,
Wiley
, Hoboken, NJ, pp.
754
818
.
44.
Rincon-Tabares
,
J.-S.
,
Velasquez-Gonzalez
,
J. C.
,
Ramirez-Tamayo
,
D.
,
Montoya
,
A.
,
Millwater
,
H.
, and
Restrepo
,
D.
,
2022
, “
Sensitivity Analysis for Transient Thermal Problems Using the Complex-Variable Finite Element Method
,”
Appl. Sci.
,
12
(
5
), p.
2738
.10.3390/app12052738
45.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
,
Buckingham, UK
.
46.
Efron
,
B.
, and
Tibshirani
,
R. J.
,
1994
,
An Introduction to the Bootstrap
,
CRC Press
, Boca Raton, FL.
47.
Epanechnikov
,
V. A.
,
1969
, “
Non-Parametric Estimation of a Multivariate Probability Density
,”
Theory Probab. Its Appl.
,
14
(
1
), pp.
153
158
.10.1137/1114019
48.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis: The Primer
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.