Abstract

Survival rates for sudden cardiac death treated with external defibrillation are estimated to be up to five times greater compared to cardio-pulmonary resuscitation alone. Computational modeling can be used to investigate the relationship between patch location and defibrillation efficacy. However, credibility of model predictions is unclear. The aims of this paper are to (1) assess credibility of a commonly used computational approach for predicting impact of patch relocation on defibrillation efficacy; and (2) provide a concrete biomedical example of a model validation study with supporting applicability analysis, to systematically assess the relevance of the validation study for a proposed model context of use (COU). An electrostatic heart and torso computational model was developed. Simulations were compared against experimental recordings from a swine subject with external patches and multiple body surface and intracardiac recording electrodes. The applicability of this swine validation study to the human COU was assessed using an applicability analysis framework. Knowledge gaps identified by the applicability analysis were addressed using sensitivity analyses. In the swine validation study, quantitative agreement (R2 = 0.85) was observed between predicted and observed potentials at both surface and intracardiac electrodes using a left-right patch placement. Applicability analysis identified uncertainty in tissue conductivities as one of the main potential sources of unreliability; however, a sensitivity the analysis demonstrated that uncertainty in conductivity parameters had relatively little impact on model predictions (less than 10% relative change for twofold conductivity changes). We believe the results support pursuing human simulations further to evaluate impact of patch relocation.

References

1.
Gray
,
R. A.
, and
Pathmanathan
,
P.
,
2018
, “
Patient-Specific Cardiovascular Computational Modeling: Diversity of Personalization and Challenges
,”
J. Cardiovasc. Transl. Res.
,
11
(
2
), pp.
80
88
.10.1007/s12265-018-9792-2
2.
Jolley
,
M.
,
Stinstra
,
J.
,
Pieper
,
S.
,
MacLeod
,
R.
,
Brooks
,
D. H.
,
Cecchin
,
F.
, and
Triedman
,
J. K.
,
2008
, “
A Computer Modeling Tool for Comparing Novel ICD Electrode Orientations in Children and Adults
,”
Heart Rhythm.
,
5
(
4
), pp.
565
572
.10.1016/j.hrthm.2008.01.018
3.
Prakosa
,
A.
,
Arevalo
,
H. J.
,
Deng
,
D.
,
Boyle
,
P. M.
,
Nikolov
,
P. P.
,
Ashikaga
,
H.
,
Blauer
,
J. J. E.
, et al.,
2018
, “
Personalized Virtual-Heart Technology for Guiding the Ablation of Infarct-Related Ventricular Tachycardia
,”
Nat. Biomed. Eng.
,
2
(
10
), pp.
732
740
.10.1038/s41551-018-0282-2
4.
Blauer
,
J. J.
,
Swenson
,
D.
,
Higuchi
,
K. O. J. I.
,
Plank
,
G.
,
Ranjan
,
R. A. V. I.
,
Marrouche
,
N.
, and
Macleod
,
R. S.
,
2014
, “
Sensitivity and Specificity of Substrate Mapping: An In Silico Framework for the Evaluation of Electroanatomical Substrate Mapping Strategies
,”
J. Cardiovasc. Electrophysiol.
,
25
(
7
), pp.
774
780
.10.1111/jce.12444
5.
Adgey
,
A. J.
,
Spence
,
M. S.
, and
Walsh
,
S. J.
,
2005
, “
Theory and Practice of Defibrillation: (2) Defibrillation for Ventricular Fibrillation
,”
Heart
,
91
(
1
), pp.
118
125
.10.1136/hrt.2003.019927
6.
Jacobs
,
I.
,
Sunde
,
K.
,
Deakin
,
C. D.
,
Hazinski
,
M. F.
,
Kerber
,
R. E.
,
Koster
,
R. W.
,
Morrison
,
L. J.
, et al.,
2010
, “
Part 6: Defibrillation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations
,”
Circulation
,
122
(
16_suppl_2
), pp.
S325
S337
.10.1161/CIRCULATIONAHA.110.971010
7.
Stryker,
2010
, “
LIFEPAK 15 Monitor/Defibrillator Operating Instructions
,” Stryker, St Leonards, Australia.
8.
Heames
,
R. M.
,
Sado
,
D.
, and
Deakin
,
C. D.
,
2001
, “
Do Doctors Position Defibrillation Paddles Correctly? Observational Study
,”
BMJ
,
322
(
7299
), pp.
1393
1394
.10.1136/bmj.322.7299.1393
9.
Burton
,
B. M.
, Tate, J., D., Erem, B., Swenson, D., Wang, D. F., Steffen, M., Brooks, D., van Dam, P., M., MacLeod, R. S.,
2011
, “
A Toolkit for Forward/Inverse Problems in Electrocardiography Within the SCIRun Problem Solving Environment
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology
, Boston, MA, Aug. 30–Sept. 3, pp.
267
270
.10.1109/IEMBS.2011.6090052
10.
Camacho
,
M. A.
,
Lehr
,
J. L.
, and
Eisenberg
,
S. R.
,
1995
, “
A Three-Dimensional Finite Element Model of Human Transthoracic Defibrillation: Paddle Placement and Size
,”
IEEE Trans. Biomed. Eng.
,
42
(
6
), pp.
572
578
.10.1109/10.387196
11.
Jorgenson
,
D. B.
,
Haynor
,
D. R.
,
Bardy
,
G. H.
, and
Y.
Kim
,
1995
, “
Computational Studies of Transthoracic and Transvenous Defibrillation in a Detailed 3-D Human Thorax Model
,”
IEEE Trans. Biomed. Eng.
,
42
(
2
), pp.
172
184
.10.1109/10.341830
12.
Jorgenson
,
D. B.
,
Schimpf
,
P. H.
,
Shen
,
I.
,
Johnson
,
G.
,
Bardy
,
G. H.
,
Havnor
,
D. R.
, and
Y.
Kim
,
1995
, “
Predicting Cardiothoracic Voltages During High Energy Shocks: Methodology and Comparison of Experimental to Finite Element Model Data
,”
IEEE Trans. Biomed. Eng.
,
42
(
6
), pp.
559
571
.10.1109/10.387195
13.
Panescu
,
D.
,
Webster
,
J. G.
,
Tompkins
,
W. J.
, and
Stratbucker
,
R. A.
,
1995
, “
Optimization of Cardiac Defibrillation by Three-Dimensional Finite Element Modeling of the Human Thorax
,”
IEEE Trans. Biomed. Eng.
,
42
(
2
), pp.
185
192
.10.1109/10.341831
14.
Rodrı́iguez
,
B.
, and
Trayanova
,
N.
,
2003
, “
Upper Limit of Vulnerability in a Defibrillation Model of the Rabbit Ventricles
,”
J. Electrocardiol.
,
36
, pp.
51
56
.10.1016/j.jelectrocard.2003.09.066
15.
ASME
,
2018
, “
V&V 40-2018 Assessing Credibility of Com Putational Modeling Through Verification and Validation: Application to Medical Devices
,” ASME, New York, Standard No. ASME V&V 40–2018.
16.
Pathmanathan
,
P.
,
Gray
,
R. A.
,
Romero
,
V. J.
, and
Morrison
,
T. M.
,
2017
, “
Applicability Analysis of Validation Evidence for Biomedical Computational Models
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
2
(
2
), p. 021005.10.1115/1.4037671
17.
Tate
,
J. D.
,
Pilcher
,
T. A.
,
Aras
,
K. K.
,
Burton
,
B. M.
, and
MacLeod
,
R. S.
,
2020
, “
Validating Defibrillation Simulation in a Human-Shaped Phantom
,”
Heart Rhythm.
,
17
(
4
), pp.
661
668
.10.1016/j.hrthm.2019.11.020
18.
Tate
,
J.
,
Stinstra
,
J.
,
Pilcher
,
T.
,
Poursaid
,
A.
,
Jolley
,
M. A.
,
Saarel
,
E.
,
Triedman
,
J.
, and
MacLeod
,
R. S.
,
2018
, “
Measuring Defibrillator Surface Potentials: The Validation of a Predictive Defibrillation Computer Model
,”
Comput. Biol. Med.
,
102
, pp.
402
410
.10.1016/j.compbiomed.2018.08.025
19.
Mocanu
,
D.
,
2001
, “
Patient-Specific Simulation of Internal Defibrillation
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
,
Springer
, Utretch, The Netherlands, pp.
983
990
.
20.
Bragard
,
J.
, Elorza, J., Cherry, E. M., and Fenton, F. H,
2013
, “
Validation of a Computational Model of Cardiac Defibrillation
,”
Computing in Cardiology
,
IEEE
, Zaragoza, Spain, Sept. 22–25, pp.
851
854
.https://ieeexplore.ieee.org/document/6713511
21.
Rodríguez
,
B.
,
Li
,
L.
,
Eason
,
J. C.
,
Efimov
,
I. R.
, and
Trayanova
,
N. A.
,
2005
, “
Differences Between Left and Right Ventricular Chamber Geometry Affect Cardiac Vulnerability to Electric Shocks
,”
Circ. Res.
,
97
(
2
), pp.
168
175
.10.1161/01.RES.0000174429.00987.17
22.
Tate
,
J.
, Stinstra, J., Pilcher, T., Poursaid, A., Saarel, E., MacLeod, R.,
2011
, “
Measuring Defibrillator Surface Potentials for Simulation Verification
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
IEEE
, Boston, MA, 2011, pp.
239
242
.
23.
Malmivuo
,
J.
, and
Plonsey
,
R.
,
1995
,
Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields
,
Oxford University Press
, Oxford, UK.
24.
Pathmanathan
,
P.
,
Galappaththige
,
S. K.
,
Cordeiro
,
J. M.
,
Kaboudian
,
A.
,
Fenton
,
F. H.
, and
Gray
,
R. A.
,
2020
, “
Data-Driven Uncertainty Quantification for Cardiac Electrophysiological Models: Impact of Physiological Variability on Action Potential and Spiral Wave Dynamics
,”
Front. Physiol.
,
11
, p.
585400
.10.3389/fphys.2020.585400
25.
Pathmanathan
,
P.
,
Cordeiro
,
J. M.
, and
Gray
,
R. A.
,
2019
, “
Comprehensive Uncertainty Quantification and Sensitivity Analysis for Cardiac Action Potential Models
,”
Front. Physiol.
,
10
, p.
721
.10.3389/fphys.2019.00721
You do not currently have access to this content.