Abstract

Three-dimensional vortical structures within the endwall region of turbine passages directly affect the aerodynamic efficiency and heat transfer characteristics of the turbine. Interactions between the vortical endwall structures and the suction surface flow have been shown to be a significant source of loss generation through passages. One dominant vortex extends from the leading-edge junction region of the blade across the passage, where it interacts with the flow along the suction surface of the adjacent blade. In high-lift low-pressure turbine cascade passages, the vortical structure intermittently loses coherence and exhibits unsteady variations of strength and position as it extends across the passage. The present paper details the temporal behavior through high-speed measurements in a low-speed linear cascade of high-lift low-pressure turbine blades. Stereoscopic particle image velocimetry measurements in the passage are used to evaluate the unsteady behavior of the vortex. Space-time iso-surface plots of Q-criterion clearly show the evolution of the vortex over time. Analysis of the data reveals the various time scales of fluctuations in strength and position. Comparisons of the temporal fluctuations in the high-lift turbine passage are made with similar phenomena found in canonical junction flow papers in the literature. Key findings support the hypothesis that in-passage vortex unsteady characteristics near the endwall are influenced by leading-edge junction flow dynamics, and provide additional insight into the unsteady endwall flow physics that is necessary to further the development of endwall loss reduction techniques.

References

1.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.
2.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.
3.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer-Trans. ASME
,
110
(
4a
), pp.
862
869
.
4.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
5.
Langston
,
L. S.
,
2001
, “
Secondary Flow in Axial Turbines—A Review
,”
Ann. New York Acad. Sci.
,
934
(
1
), pp.
11
26
.
6.
Gross
,
A.
,
Marks
,
C. R.
, and
Sondergaard
,
R.
,
2017
, “
Numerical Investigation of Low-Pressure Turbine Junction Flow
,”
AIAA J.
,
55
(
10
), pp.
3617
3621
.
7.
Gand
,
F.
,
Deck
,
S.
,
Brunet
,
V.
, and
Sagaut
,
P.
,
2010
, “
Flow Dynamics Past a Simplified Wing Body Junction
,”
Phys. Fluids
,
22
(
11
), p.
115111
.
8.
Barber
,
T.
,
1978
, “
An Investigation of Strut-Wall Intersection Losses
,”
J. Aircr.
,
15
(
10
), pp.
676
681
.
9.
Simpson
,
R. L.
,
2001
, “
Junction Flows
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
415
443
.
10.
Devenport
,
W. J.
, and
Simpson
,
R. L.
,
1990
, “
Time-Dependent and Time-Averaged Turbulence Structure Near the Nose of a Wing-Body Junction
,”
J. Fluid Mech.
,
210
, pp.
23
55
.
11.
Agui
,
J. H.
, and
Andreopoulos
,
J.
,
1992
, “
Experimental Investigation of a Three-Dimensional Boundary Layer Flow in the Vicinity of an Upright Wall Mounted Cylinder (Data Bank Contribution)
,”
J. Fluid. Eng.
,
114
(
4
), pp.
566
576
.
12.
Rood
,
E. P.
,
1984
, “Experimental Investigation of the Turbulent Large Scale Temporal Flow in the Wing-Body Junction,”
Ph.D. dissertation
,
The Catholic University of America
,
Washington, DC
.
13.
Gross
,
A.
, and
Robison
,
Z.
,
2018
, “
Numerical Simulations of Turbulent Junction Flow
,”
Proceedings of the 2018 AIAA Fluid Dynamics Conference
, AIAA Paper No. 3866.
14.
Gross
,
A.
,
Marks
,
C. R.
,
Sondergaard
,
R.
,
Bear
,
P. S.
, and
Wolff
,
J. M.
,
2018
, “
Experimental and Numerical Characterization of Flow Through Highly Loaded Low-Pressure Turbine Cascade
,”
AIAA J. Propul. Power
,
34
(
1
), pp.
27
39
.
15.
Gross
,
A.
,
Romero
,
S.
,
Marks
,
C.
, and
Sondergaard
,
R.
,
2016
, “
Numerical Investigation of Low-Pressure Turbine Endwall Flows
,”
Proceedings of the 54th AIAA Aerospace Sciences Meeting
,
San Diego, CA
, AIAA Paper No. 2016-0331.
16.
Veley
,
E.
,
Marks
,
C.
,
Anthony
,
R.
,
Sondergaard
,
R.
, and
Wolff
,
M.
,
2018
, “
Unsteady Flow Measurements in a Front Loaded Low Pressure Turbine Passage
,”
Proceedings of the 2018 AIAA Aerospace Sciences Meeting
, AIAA Paper No. 2018-2124.
17.
Veley
,
E. M.
,
2018
, “
Measurement of Unsteady Characteristics of Endwall Vortices Using Surface Mounted Hot-Film Sensors
,”
M.S. thesis
,
Wright State University
,
Dayton, OH
.
18.
Bear
,
P.
,
Wolff
,
M.
,
Gross
,
A.
,
Marks
,
C. R.
, and
Sondergaard
,
R.
,
2018
, “
Experimental Investigation of Total Pressure Loss Development in a Highly Loaded Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
140
(
3
), p.
031003
.
19.
Escauriaza
,
C.
, and
Sotiropoulos
,
F.
,
2011
, “
Reynolds Number Effects on the Coherent Dynamics of the Turbulent Horseshoe Vortex System
,”
Flow, Turbul. Combust.
,
86
(
2
), pp.
231
262
.
20.
Lange
,
E. A.
,
Elahi
,
S. S.
, and
Lynch
,
S. P.
,
2018
, “
Time-Resolved PIV Measurements of the Effect of Freestream Turbulence on Horseshoe Vortex Dynamics
,”
Proceedings of the 2018 AIAA Aerospace Sciences Meeting
, AIAA Paper No. 2018-0584.
21.
Fleming
,
J.
,
Simpson
,
R.
, and
Devenport
,
W.
,
1991
, “
An Experimental Study of a Turbulent Wing-Body Junction and Wake Flow
,”
Aerospace and Ocean Engineering Department, Virginia Polytechnic Institute and State University Technical Report No. VPI-AOE-179.
22.
McQuilling
,
M. W.
,
2007
, “
Design and Validation of a High-Lift low-Pressure Turbine Blade
,”
Ph.D. dissertation
,
Wright State University
,
Dayton, OH
.
23.
Sangston
,
K.
,
Little
,
J.
,
Lyall
,
M. E.
, and
Sondergaard
,
R.
,
2013
, “
Endwall Loss Reduction of High Lift low Pressure Turbine Airfoils Using Profile Contouring—Part II: Validation
,”
Proceedings of ASME Turbo Expo
, ASME Paper No. GT2013-95002.
24.
Hunt
,
J. C.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Studying Turbulence Using Numerical Simulation Databases—II Proceedings of the 1988 Summer Program
,
Stanford University, CA
.
25.
Blackwelder
,
R. F.
, and
Kaplan
,
R. E.
,
1976
, “
On the Wall Structure of the Turbulent Boundary Layer
,”
J. Fluid Mech.
,
76
(
1
), pp.
89
112
.
You do not currently have access to this content.