Abstract

Overlapping features are commonly used as rim seals between stationary and rotating components in a turbine stage. These rim seals are used to prevent main gas path ingestion to the wheelspace cavity, which reduces the lifespan of critical engine components such as the turbine disk. In addition to the overlapping features, purge flow, diverted from the compressor, is injected into the rim cavity to act as an airflow sealing mechanism. Previous research identified that in addition to the purge flow in the rim cavity, cooling flow from the vane trailing edge (VTE) is ingested into the rim seal cavity carrying the potential to cool components in the wheelspace. These previous findings, however, were not able to distinctly separate purge from VTE cooling flows, which is the contribution of this paper based on uniquely using two different tracer gases. A one-stage test turbine operating at engine-relevant conditions and consisting of real engine hardware was used to validate and quantify the ingestion of the VTE flow by independently seeding the purge and VTE flows with two different tracer gases. Experimental results show the presence of VTE flow in the rim seal throughout all purge flowrates evaluated. Circumferential variation of VTE flow was also studied both experimentally and computationally using a computational fluid dynamics model. Results showed that ingested VTE flow can reduce the detrimental effect of hot gas ingestion particularly at higher purge flowrates.

References

1.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
.
2.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.
3.
Siroka
,
S.
,
Monge-Concepción
,
I.
,
Berdanier
,
R. A.
,
Barringer
,
M. D.
, and
Thole
,
K. A.
,
2021
, “
Correlating Cavity Sealing Effectiveness to Time-Resolved Rim Seal Events in the Presence of Vane Trailing Edge Flow
,” GT2021-59285.
4.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Michael Owen
,
J.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
120801
.
5.
Johnson
,
B. V.
,
Mack
,
G. J.
,
Paolillo
,
R. E.
, and
Daniels
,
W. A.
,
1994
, “
Turbine Rim Seal Gas Path Flow Ingestion Mechanisms
,”
Joint Propulsion Conference and Exhibit
, 94-2703.
6.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.
7.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part II: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021013
.
8.
Clark
,
K. P.
,
Johnson
,
D.
,
Thole
,
K. A.
,
Robak
,
C.
,
Barringer
,
M. D.
, and
Grover
,
E.
,
2018
, “
Effects of Purge Flow Configuration on Sealing Effectiveness in a Rotor–Stator Cavity
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), p.
112502
.
9.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2003
, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.
10.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2014
, “
Experimental Measurements of Hot Gas Ingestion Through Turbine Rim Seals at Off-Design Conditions
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
228
(
5
), pp.
491
507
.
11.
Patinios
,
M.
,
Ong
,
I. L.
,
Scobie
,
J. A.
,
Lock
,
G. D.
, and
Sangan
,
C. M.
,
2018
, “
Influence of Leakage Flows on Hot Gas Ingress
,” GT2018-75071.
12.
Scobie
,
J. A.
,
Hualca
,
F. P. T.
,
Patinios
,
M.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2018
, “
Re-Ingestion of Upstream Egress in a 1.5-Stage Gas Turbine Rig
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
072507
.
13.
Hualca
,
F. P. T.
,
Horwood
,
J. T. M.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2020
, “
The Effect of Vanes and Blades on Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021020
.
14.
Monge-Concepción
,
I.
,
Siroka
,
S.
,
Berdanier
,
R. A.
,
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Robak
,
C.
,
2021
, “
Unsteady Turbine Rim Sealing and Vane Trailing Edge Flow Effects
,” GT2021-59273.
15.
Monge-Concepción
,
I.
,
Berdanier
,
R. A.
,
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Robak
,
C.
,
2020
, “
Evaluating the Effect of Vane Trailing Edge Flow on Turbine Rim Sealing
,”
ASME J. Turbomach.
,
142
(
8
), p.
081001
.
16.
Barringer
,
M. D.
,
Coward
,
A.
,
Clark
,
K. P.
,
Thole
,
K. A.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
,
2014
, “
The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,” GT2014-25570.
17.
Clark
,
K. P.
,
Barringer
,
M. D.
,
Thole
,
K. A.
,
Clum
,
C.
,
Hiester
,
P.
,
Memory
,
C.
, and
Robak
,
C.
,
2016
, “
Using a Tracer Gas to Quantify Sealing Effectiveness for Engine Realistic Rim Seals
,”
ASME Turbo Expo 2016
, GT2016-58095.
18.
Riffat
,
S. B.
,
1992
,
Balancing Airflow in HVAC Systems Using Tracer-Gas Techniques
, Department of Architecture and Planning, School of Architecture, University of Nottingham, www.aivc.org/sites/default/files/airbase_5690.pdf
19.
Bassett
,
M. R.
,
Shaw
,
C.-Y.
, and
Evans
,
R. G.
,
1981
, “
An Appraisal of the Sulphur Hexafluoride Decay Technique for Measuring Air Infiltration Rates in Buildings
,”
ASHRAE Trans.
,
97
(
2
), p.
2657
.
20.
Simmonds
,
P. G.
,
Rigby
,
M.
,
Manning
,
A.
,
Park
,
J.
,
Stanley
,
S.
,
McCulloch
,
K. M.
,
Henne
,
A.
, et al
,
2020
, “
The Increasing Atmospheric Burden of the Greenhouse Gas Sulfur Hexafluoride (SF6)
,”
Atmos. Chem. Phys.
,
20
(
12
), pp.
7271
7290
.
21.
Berdanier
,
R. A.
,
Thole
,
K. A.
,
Knisely
,
B. F.
,
Barringer
,
M. D.
,
Grover
,
E. A.
, and
Monge-Concepción
,
I.
,
2019
, “
Scaling Sealing Effectiveness in a Stator–Rotor Cavity for Differing Blade Spans
,”
ASME J. Turbomach.
,
141
(
5
), p.
051007
.
22.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2014
,
Theory and Design for Mechanical Measurements
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
23.
Savov
,
S. S.
,
Atkins
,
N. R.
, and
Uchida
,
S.
,
2017
, “
A Comparison of Single and Double Lip Rim Seal Geometry
,”
ASME J. Eng. Gas Turbines Power
,
139
(
11
), p.
112601
.
24.
Savov
,
S. S.
, and
Atkins
,
N. R.
,
2017
, “
A Rim Seal Ingress Model Based on Turbulent Transport
,” GT2017-63531.
25.
Clark
,
K. P.
,
Barringer
,
M. D.
,
Johnson
,
D.
,
Thole
,
K. A.
,
Grover
,
E. A.
, and
Robak
,
C.
,
2017
, “
Effects of Purge Flow Configuration on Sealing Effectiveness in a Rotor–Stator Cavity
,” GT2017-63910.
26.
Siemens PLM Software
,
2017
,
STAR-CCM+ 11.06
,
Siemens PLM Software
,
Plano, TX
.
27.
ANSYS
,
2017
,
ANSYS Fluent 18.2
,
ANSYS
,
Canonsburg, PA
.
28.
Robak
,
C.
,
Faghri
,
A.
, and
Thole
,
K. A.
,
2019
, “
Analysis of Gas Turbine Rim Cavity Ingestion With Axial Purge Flow Injection
,” GT2019-91807.
29.
Gibson
,
J.
,
Thole
,
K. A.
,
Christophel
,
J.
,
Memory
,
C.
, and
Thomas
,
P.
,
2016
, “
Pressure Distortion Effects on Rim Seal Performance in a Linear Cascade
,” GT2016-58098.
30.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
Turbo Expo 2010
, GT2010-22540.
31.
O’Mahoney
,
T. S. D.
,
Hills
,
N. J.
,
Chew
,
J. W.
, and
Scanlon
,
T.
,
2011
, “
Large-Eddy Simulation of Rim Seal Ingestion
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
225
(
12
), pp.
2881
2891
.
You do not currently have access to this content.