Solid materials forming the boundaries of a lubrication interface may be elastoplastic, heat treated, coated with multilayers, or functionally graded. They may also be composites reinforced by particles or have impurities and defects. Presented in this paper is a model for elastohydrodynamic lubrication interfaces formed with these realistic materials. This model considers the surface deformation and subsurface stresses influenced by material inhomogeneities, where the inhomogeneities are replaced by inclusions with properly determined eigenstrains by means of the equivalent inclusion method. The surface displacement or deformation caused by inhomogeneities is introduced to the film thickness equation. The stresses are the sum of those caused by the fluid pressure and the eigenstrains. The lubrication of a material with a single inhomogeneity, multiple inhomogeneities, and functionally graded coatings are analyzed to reveal the influence of inhomogeneities on film thickness, pressure distribution, and subsurface stresses.

References

1.
Ghosh
,
S.
, and
Moorthey
,
S.
,
1995
, “
Elastic-Plastic Analysis of Arbitrary Heterogeneous Materials With the Voronoi Cell Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
121
(
1–4
), pp.
373
409
.10.1016/0045-7825(94)00687-I
2.
Jalalahmadi
,
B.
, and
Sadeghi
,
F.
,
2009
, “
A Voronoi Finite Element Study of Fatigue Life Scatter in Rolling Contacts
,”
ASME J. Tribol.
,
131
(
2
), p.
022203
.10.1115/1.3063818
3.
Raje
,
N. N.
,
Sadeghi
,
F.
,
Rateick
,
R. G.
, Jr.
, and
Hoeprich
,
M. R.
,
2007
, “
Evaluation of Stresses Around Inclusions in Hertzian Contacts Using the Discrete Element Method
,”
ASME J. Tribol.
,
129
(
2
), pp.
283
291
.10.1115/1.2464132
4.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
241
, pp.
376
396
.10.1098/rspa.1957.0133
5.
Mura
,
T.
,
1993
,
Micromechanics of Defects in Solids
, 2nd ed.,
Kluwer
,
Dordrecht
, Netherlands.
6.
Mindlin
,
R. D.
, and
Cheng
,
D. H.
,
1950
, “
Thermoelastic Stress in the Semi-Infinite Solid
,”
J. Appl. Phys.
21
, pp.
931
933
.10.1063/1.1699786
7.
Seo
,
K.
, and
Mura
,
T.
,
1979
, “
The Elastic Field in a Half Space Due to Ellipsoidal Inclusions With Uniform Dilatational Eigenstrains
,”
ASME J. Appl. Mech.
,
46
(
3
), pp.
568
572
.10.1115/1.3424607
8.
Chiu
,
Y. P.
,
1978
, “
On the Stress Field and Surface Deformation in a Half Space With a Cuboidal Zone in Which Initial Strains are Uniform
,”
ASME J. Appl. Mech.
,
45
(
2
), pp.
302
306
.10.1115/1.3424292
9.
Jacq
,
C.
,
Nélias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
,
2002
, “
Development of a Three-Dimensional Semi-Analytical Elastic–Plastic Contact Code
,”
ASME J. Tribol.
,
124
(
4
), pp.
653
667
.10.1115/1.1467920
10.
Zhou
,
K.
,
Chen
,
W. W.
,
Keer
,
L. M.
, and
Wang
,
Q. J.
,
2009
, “
A Fast Method for Solving Three-Dimensional Arbitrarily Shaped Inclusions in a Half Space
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
9–12
), pp.
885
892
.10.1016/j.cma.2008.10.021
11.
Leroux
,
J.
,
Fulleringer
,
B.
, and
Nélias
,
D.
,
2010
, “
Contact Analysis in Presence of Spherical Inhomogeneities Within a Half-Space
,”
Int. J. Solids Struct.
,
47
(
22–23
), pp.
3034
3049
.10.1016/j.ijsolstr.2010.07.006
12.
Liu
,
S. B.
,
Jin
,
X. Q.
,
Wang
,
Z. J.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2012
, “
Analytical Solution for Elastic Fields Caused by Eigenstrains in a Half-Space and Numerical Implementation Based on FFT
,”
Int. J. Plast.
,
35
, pp.
135
154
.10.1016/j.ijplas.2012.03.002
13.
Wang
,
Z. J.
,
Jin
,
X. Q.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2012
, “
Numerical Methods for Contact Between Two Joined Quarter Spaces and a Rigid Sphere
,”
Int. J. Solids Struct.
,
49
(
18
), pp.
2515
2527
.10.1016/j.ijsolstr.2012.05.027
14.
Chen
,
W. W.
,
Zhou
,
K.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2010
, “
Modeling Elasto-Plastic Indentation on Layered Materials Using the Equivalent Inclusion Method
,”
Int. J. Solids Struct.
,
47
(
20
), pp.
2841
2854
.10.1016/j.ijsolstr.2010.06.011
15.
Zhou
,
K.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2011
, “
Semi-Analytic Solution for Multiple Interacting Three-Dimensional Inhomogeneous Inclusions of Arbitrary Shape in an Infinite Space
,”
Int. J. Numer. Methods Eng.
,
87
(
7
), pp.
617
638
.10.1002/nme.3117
16.
Wang
,
Z. J.
,
Jin
,
X. Q.
,
Zhou
,
Q. H.
,
Ai
,
X. L.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2013
, “
An Efficient Numerical Method With a Parallel Computational Strategy for Solving Arbitrarily Shaped Inclusions in Elasto-Plastic Contact Problems
,”
ASME J. Tribol.
,
135
(
3
), p.
031401
.10.1115/1.4023948
17.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1959
, “
A Numerical Solution to the Elastohydrodynamic Problem
,”
J. Eng. Sci.
,
1
, pp.
6
15
.10.1243/JMES_JOUR_1959_001_004_02
18.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elastohydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication
,
Pergamon
,
New York
.
19.
Lubrecht
,
A. A.
, and
Ioannides
,
E.
,
1991
, “
A Fast Solution of the Dry Contact Problem and the Associated Sub-Surface Stress Field, Using Multilevel Techniques
,”
ASME J. Tribol.
,
113
(
1
), pp.
128
133
.10.1115/1.2920577
20.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
,
Multilevel Methods in Lubrication, Vol. 37
,
Elsevier
,
New York.
21.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1–2
), pp.
101
111
.10.1016/S0043-1648(00)00427-0
22.
Wang
,
W. Z.
,
Wang
,
H.
,
Liu
,
Y. C.
,
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2003
, “
A Comparative Study of the Methods for Calculation of Surface Elastic Deformation
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
217
(
2
), pp.
145
152
.10.1243/13506500360603570
23.
Zhu
,
D.
, and
Wang
,
Q.
,
2011
, “
Elastohydrodynamic Lubrication (EHL): A Gateway to Interfacial Mechanics-Review and Prospect
,”
ASME J. Tribol.
,
133
(
4
), p.
041001
.10.1115/1.4004457
24.
Zhu
,
D.
, and
Hu
,
Y.
,
1999
, “
The Study of Transition From Full Film Elastohydrodynamic to Mixed and Boundary Lubrication
,”
Proceedings of the 1999 STLE/ASME H. S. Cheng Tribology Surveillance, STLE, Park Ridge
, IL, pp.
150
156
.
25.
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2000
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
(
1
), pp.
1
9
.10.1115/1.555322
26.
Zhu
,
D.
,
2007
, “
On Some Aspects in Numerical Simulation of Thin Film and Mixed EHL
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
221
, pp.
561
579
.10.1243/13506501JET259
27.
Slack
,
T. S.
,
Raje
,
N.
,
Sadeghi
,
F.
,
Doll
,
G.
, and
Hoeprich
,
M. R.
,
2007
, “
EHL Modeling for Non-Homogenous Materials: The Effect of Material Inclusions
,”
ASME J. Tribol.
,
129
(
2
), pp.
256
273
.10.1115/1.2540234
28.
Liu
,
Y. C.
,
Chen
,
W. W.
,
Liu
,
S. B.
,
Zhu
,
D.
, and
Wang
,
Q.
,
2007
, “
An Elastohydrodynamic Lubrication Model for Coated Surfaces in Point Contacts
,”
ASME J. Tribol.
,
129
(
3
), pp.
509
516
.10.1115/1.2736433
29.
Liu
,
Y. C.
,
Zhu
,
D.
, and
Wang
,
Q.
,
2008
, “
Effect of Stiff Coatings on EHL Film Thickness in Point Contacts
,”
ASME J. Tribol.
,
130
(
3
), p.
031501
.10.1115/1.2908908
30.
Wang
,
Z. J.
,
Wang
,
W. Z.
,
Wang
,
H.
, and
Hu
,
Y. Z.
,
2009
, “
Stress Analysis on Layered Materials in Point Elastohydrodynamic–Lubricated Contacts
,”
Tribol. Lett.
,
35
(
3
), pp.
229
244
.10.1007/s11249-009-9452-4
31.
Ren
,
N.
,
Zhu
,
D.
,
Chen
,
W. W.
, and
Wang
,
Q. J.
,
2010
, “
Plasto-Elastohydrodynamic Lubrication (PEHL) in Point Contacts
,”
ASME J. Tribol.
,
132
(
3
), p.
031501
.10.1115/1.4001813
32.
Ren
,
N.
,
Zhu
,
D.
, and
Wang
,
Q. J.
,
2011
, “
Three-Dimensional Plasto-Elastohydrodynamic Lubrication (PEHL) for Surfaces With Irregularities
,”
ASME J. Tribol.
,
133
(
3
), p.
031502
.10.1115/1.4004100
33.
Bair
,
S.
,
2007
,
High Pressure Rheology for Quantitative Elastohydrodynamics
,
Elsevier
,
Amsterdam
.
34.
Liu
,
S. B.
, and
Wang
,
Q.
,
2002
, “
Study Contact Stress Fields Caused by Surface Tractions With a Discrete Convolution and Fast Fourier Transform Algorithm
,”
ASME J. Tribol.
,
124
(
1
), pp.
36
45
.10.1115/1.1401017
35.
Ai
,
X.
,
1993
, “
Numerical Analyses of Elastohydrodynamically Lubricated Line and Point Contacts With Rough Surfaces by Using Semi-System and Multigrid Methods
,” Ph.D. thesis,
Northwestern University, Evanston
,
IL
.
36.
Liu
,
Y. C.
,
Wang
,
W. Z.
,
Zhu
,
D.
,
Hu
,
Y. Z.
, and
Wang
,
Q.
,
2013
, “
Effects of Differential Scheme and Mesh Density on EHL Film Thickness in Point Contacts
,”
ASME J. Tribol.
,
128
(
3
), pp.
641
653
.10.1115/1.2194916
37.
Wang
,
Z. J.
,
Jin
,
X. Q.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2013
, “
Novel Model for Partial-Slip Contact Involving a Material With Inhomogeneity
,”
ASME J. Tribol.
,
135
(
4
), p.
041401
.10.1115/1.4024548
You do not currently have access to this content.