Abstract

As the rate of urbanization increases, local vegetation is being replaced with man-made materials, causing increasingly adverse impacts on the surface-atmosphere energy balance. These negative effects can be simulated by modeling the urban landscapes in question; however, the main challenges of modeling urban thermal environments are the scale and resolution at which to perform such tasks. Current modeling of urban thermal environments is typically limited to either mesoscale (1 –2000 km) or microscale (<1 km) phenomena. In the present work, an open-source framework for one-way upstream coupled multiscale urban thermal environment simulations is examined and validated. This coupled simulation can provide valuable insights into the flow behavior and energy transport between mesoscale and microscale interactions. The mesoscale to microscale boundary conditions are coupled together using simulated data from the advanced research weather research and forecasting model (WRF-ARW), a mesoscale numerical weather prediction software, and assimilating it into parallelized large-eddy simulation model (PALM), a computational fluid dynamics style (CFD-style) software designed for microscale atmospheric and oceanic flows. The multiscale urban thermal environment simulations are tested for grid sensitivity to variations in model input and control parameters, and then experimentally validated against distributed sensor measurements at the Georgia Institute of Technology (Georgia Tech) campus in Atlanta, GA. Validated microscale atmospheric models with heterogeneous domains can be used to project the thermal benefits of urban heat mitigation strategies (increase use of high-albedo surfaces, tree and vegetation cover, and smart growth practices) and advise building energy usage modeling and policies.

References

1.
UNDESA
,
2018
, 68% of the World Population Projected to Live in Urban Areas by 2050, Says UN, https://www.un.org/development/desa/en/news/population/2018-revision-of-worldurbanization-prospects.html
2.
Oke
,
T. R.
,
1982
, “
The Energetic Basis of the Urban Heat Island
,”
Q. J. R. Metereol. Soc.
,
108
(
455
), pp.
1
24
.
3.
Anderson
,
G. B.
, and
Bell
,
M. L.
,
2011
, “
Heat Waves in the United States: Mortality Risk During Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S. Communities
,”
Environ. Health. Perspect.
,
119
(
2
), pp.
210
218
.
4.
Luber
,
G.
,
Knowlton
,
K.
,
Balbus
,
J.
,
Hayden
,
M.
,
Hess
,
J.
,
McGeehin
,
M.
,
Sheats
,
N.
, et al.,
2014
, “
Ch.9: Human Health
,”
Climate Change Impacts in the United States: The Third National Climate Assessment
,
M.
Melillo
,
T.
Richmond
, and
G. W.
Yohe
, eds.,
U.S. Global Change Research Program
,
Washington, DC
, pp.
220
256
.
5.
Petitti
,
D. B.
,
Hondula
,
D. M.
,
Yang
,
S.
,
Harlan
,
S. L.
, and
Chowell
,
G.
,
2016
, “
Multiple Trigger Points for Quantifying Heat-Health Impacts: New Evidence From a Hot Climate
,”
Environ. Health. Perspect.
,
124
(
2
), pp.
176
183
.
6.
Battisti
,
D. S.
, and
Naylor
,
R. L.
,
2009
, “
Historical Warnings of Future Food Insecurity With Unprecedented Seasonal Heat, Science
,”
J. Sci.
,
323
, pp.
240
244
.
7.
Anderson
,
M.
,
McMinn
,
S.
,
Eckert
,
N.
,
Underwood
,
N.
,
Mussenden
,
S.
,
Ready
,
R.
, and
Diffendal
,
T.
,
2019
, As Rising Heat Bakes U.S. Cities, The Poor Often Feel It Most, https://www.npr.org/2019/09/03/754044732/as-rising-heat-bakes-u-s-cities-the-poor-often-feel-it-most
8.
Levine
,
J. A.
,
2011
, “
Poverty and Obesity in the U.S
,”
Diabetes
,
60
(
11
), pp.
2667
2668
.
9.
Diffenbaugh
,
N. S.
, and
Scherer
,
M.
,
2011
, “
Observational and Model Evidence of Global Emergence of Permanent, Unprecedented Heat in the 20th and 21st Centuries
,”
Clim. Change
,
107
(
3–4
), pp.
615
624
.
10.
Swain
,
D. L.
,
Langenbrunner
,
B.
,
Neelin
,
J. D.
, and
Hall
,
A.
,
2018
, “
Increasing Precipitation Volatility in Twenty-First-Century California
,”
Nat. Clim. Change
,
8
(
5
), pp.
427
433
.
11.
DOE
,
2015
, “Chapter 5: Increasing Efficiency of Building Systems and Technologies,” In: Quadrennial Technology Review. US DOE, 2015, https://www.energy.gov/sites/prod/files/2017/03/f34/qtr-2015-chapter5.pdf
12.
Santamouris
,
M.
,
2013
, “
Using Cool Pavements as a Mitigation Strategy to Fight Urban Heat Island-A Review of the Actual Developments
,”
Renew. Sustain. Energy. Rev.
,
26
, pp.
224
240
.
13.
Santamouris
,
M.
,
2014
, “
Cooling the Cities – A Review of Reflective and Green Roof Mitigation Technologies to Fight Heat Island and Improve Comfort in Urban Environments
,”
Sol. Energy
,
103
, pp.
682
703
.
14.
Santamouris
,
M.
,
Cartalis
,
C.
,
Synnefa
,
A.
, and
Kolokotsa
,
D.
,
2015
, “
On the Impact of Urban Heat Island and Global Warming on the Power Demand and Electricity Consumption of Buildings-A Review
,”
Energy Build.
,
98
, pp.
119
124
.
15.
Akbari
,
H.
, and
Kolokotsa
,
D.
,
2016
, “
Three Decades of Urban Heat Islands and Mitigation Technologies Research
,”
Energy Build.
,
133
, pp.
834
842
.
16.
Stone
,
B.
,
Vargo
,
J.
,
Liu
,
P.
,
Habeeb
,
D.
,
Delucia
,
A.
,
Trail
,
M.
,
Hu
,
Y.
, and
Russell
,
A.
,
2014
, “
Avoided Heat-Related Mortality Through Climate Adaptation Strategies in Three US Cities
,”
PLoS One
,
9
(
6
), p.
e100852
.
17.
Dey
,
S.
, and
Joshi
,
Y.
,
2023
, “
Recent Progress and Challenges in Microscale Urban Heat Modeling and Measurement for Urban Engineering Applications
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
1
), p.
010801
.
18.
Orlanski
,
I.
,
1975
, “
A Rational Subdivision of Scales for Atmospheric Processes
,”
Bull. Am. Meteorol. Soc.
,
56
, pp.
527
530
.
19.
Oke
,
T.
,
1997
, “
Urban Environments
,”
The Surface Climates of Canada
,
W.
Bailey
, ed.,
McGill-Queen’s University Press
,
Montréal
, pp.
303
327
.
20.
PALM
,
2021
, PALM Offcial Technical Documentation, http://palm.muk.uni-hannover.de/trac/wiki
21.
Raasch
,
S.
, and
Schröter
,
M.
,
2001
, “
Palm – A Large-Eddy Simulation Model Performing on Massively Parallel Computers
,”
Meteorol. Z.
,
10
(
5
), pp.
363
372
.
22.
Maronga
,
B.
,
Gryschka
,
M.
,
Heinze
,
R.
,
Hoffmann
,
F.
,
Kanani-Sühring
,
F.
,
Keck
,
M.
,
Ketelsen
,
K.
,
Letzel
,
M. O.
,
Sühring
,
M.
, and
Raasch
,
S.
,
2015
, “
The Parallelized Large-Eddy Simulation Model (PALM) Version 4.0 for Atmospheric and Oceanic Flows: Model Formulation, Recent Developments, and Future Perspectives
,”
Geosci. Model Dev.
,
8
(
8
), pp.
2515
2551
.
23.
Maronga
,
B.
,
Banzhaf
,
S.
,
Burmeister
,
C.
,
Esch
,
T.
,
Forkel
,
R.
,
Fröhlich
,
D.
,
Fuka
,
V.
, et al.,
2020
, “
Overview of the Palm Model System 6.0
,”
Geosci. Model Dev.
,
13
(
3
), pp.
1335
1372
.
24.
Deardorff
,
J. W.
,
1980
, “
Stratocumulus-Capped Mixed Layers Derived From a Three-Dimensional Model
,”
Boundary-Layer Meteorol.
,
18
(
4
), pp.
495
527
.
25.
Moeng
,
C.-H.
, and
Wyngaard
,
J. C.
,
1988
, “
Spectral Analysis of Large-Eddy Simulations of the Convective Boundary Layer
,”
J. Atmos. Sci.
,
45
(
23
), pp.
3573
3587
.
26.
Saiki
,
E. M.
,
Moeng
,
C. -H.
, and
Sullivan
,
P. P.
,
2000
, “
Large-Eddy Simulation of the Stably Stratified Planetary Boundary Layer
,”
Boundary-Layer Meteorol.
,
95
(
1
), pp.
1
30
.
27.
Blackadar
,
A. K.
,
1962
, “
The Vertical Distribution of Wind and Turbulent Exchange in a Neutral Atmosphere
,”
J. Geophys. Res. (1896–1977)
,
67
(
8
), pp.
3095
3102
.
28.
Harlow
,
F. H.
, and
Welch
,
J. E.
,
1965
, “
Numerical Calculation of Time–Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
,
8
(
12
), pp.
2182
2189
.
29.
Arakawa
,
A.
, and
Lamb
,
V. R.
,
1977
, “
Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model
,”
Methods in Computational Physics: Advances in Research and Applications
,
J.
Chang
, ed.,
Vol. 17
,
Elsevier
,
Amsterdam
, pp.
173
265
.
30.
Williamson
,
J. H.
,
1980
, “
Low-Storage Runge-Kutta Schemes
,”
J. Comput. Phys.
,
35
(
1
), pp.
48
56
.
31.
Skamarock
,
W. C.
,
Klemp
,
J. B.
,
Dudhia
,
J.
,
Gill
,
D. O.
,
Liu
,
Z.
,
Berner
,
J.
,
Wang
,
W.
, et al.,
2021
,
A Description of the Advanced Research WRF Model Version 4.3
.
32.
Ooyama
,
K. V.
,
1990
, “
A Thermodynamic Foundation for Modeling the Moist Atmosphere
,”
J. Atmos. Sci.
,
47
(
21
), pp.
2580
2593
.
33.
Laprise
,
R.
,
1992
, “
The Euler Equations of Motion With Hydrostatic Pressure as an Independent Variable
,”
Mon. Weather Rev.
,
120
(
1
), pp.
197
207
.
34.
Park
,
S.-H.
,
Skamarock
,
W. C.
,
Klemp
,
J. B.
,
Fowler
,
L. D.
, and
Duda
,
M. G.
,
2013
, “
Evaluation of Global Atmospheric Solvers Using Extensions of the Jablonowski and Williamson Baroclinic Wave Test Case
,”
Mon. Weather Rev.
,
141
(
9
), pp.
3116
3129
.
35.
Klemp
,
J. B.
,
Skamarock
,
W. C.
, and
Dudhia
,
J.
,
2007
, “
Conservative Split-Explicit Time Integration Methods for the Compressible Nonhydrostatic Equations
,”
Mon. Weather Rev.
,
135
(
8
), pp.
2897
2913
.
36.
Wicker
,
L. J.
, and
Skamarock
,
W. C.
,
2002
, “
Time-splitting Methods for Elastic Models Using Forward Time Schemes
,”
Mon. Weather Rev.
,
130
(
8
), pp.
2088
2097
.
37.
Kadasch
,
E.
,
Sühring
,
M.
,
Gronemeier
,
T.
, and
Raasch
,
S.
,
2020
, “Mesoscale Nesting Interface of the PALM Model System 6.0,” 10.5194/gmd-2020-285.
38.
COSMO
,
2022
, Consortium for Small-Scale Modeling (cosmo), http://www.cosmo-model.org
39.
Rew
,
R.
,
Davis
,
G.
,
Emmerson
,
S.
,
Cormack
,
C.
,
Caron
,
J.
,
Pincus
,
R.
,
Hartnett
,
E.
,
Heimbigner
,
D.
,
Appel
,
L.
, and
Fisher
,
W.
,
1989
, Unidata NetCDF, http://www.unidata.ucar.edu/software/netcdf/
40.
Clough
,
S. A.
,
Shephard
,
M. W.
,
Mlawer
,
E. J.
,
Delamere
,
J. S.
,
Iacono
,
M. J.
,
Cady-Pereira
,
K.
,
Boukabara
,
S.
, and
Brown
,
P. D.
,
2005
, “
Atmospheric Radiative Transfer Modeling: A Summary of the Aer Codes
,”
J. Quant. Spectrosc. Radiat. Transf.
,
91
(
2
), pp.
233
244
.
41.
National Centers For Environmental Prediction, National Weather Service, NOAA, and U.S. Department of Commerce
,
2015
, NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids, http://rda.ucar.edu/datasets/ds083.3/
43.
Microsoft
,
2018
, Computer Generated Building Footprints for the United States, 07, https://github.com/Microsoft/USBuildingFootprints
45.
Giarrusso
,
T.
, and
City of Atlanta Department of Planning and Community Development
,
2022
, “2018 City of Atlanta Urban Tree Canopy Assessment and Change Analysis (2008–2018),” Report. Center for Spatial Planning Analytics and Visualization, Georgia Institute of Technology and Department of Planning and Community Development, City of Atlanta.
46.
Lee
,
M.
,
Park
,
G.
,
Park
,
C.
,
Kim
,
C.
, and
Tangchirapat
,
W.
,
2020
, “
Improvement of Grid Independence Test for Computational Fluid Dynamics Model of Building Based on Grid Resolution
,”
Adv. Civil Eng.
,
2020
, pp.
1
11
.
47.
Python Core Team
,
2019
, Python: A Dynamic, Open Source Programming Language. Python Software Foundation, https://www.python.org/
48.
Harris
,
C. R.
,
Millman
,
K. J.
,
van der Walt
,
S. J.
,
Gommers
,
R.
,
Virtanen
,
P.
,
Cournapeau
,
D.
,
Wieser
,
E.
, et al.,
2020
, “
Array Programming With NumPy
,”
Nature
,
585
(
7825
), pp.
357
362
.
49.
McKinney
,
W.
,
2010
, “
Data Structures for Statistical Computing in Python
,”
Proceedings of the 9th Python in Science Conference
,
Austin, TX
,
June 28–July 3
,
S.
van der Walt
, and
J.
Millman
, eds., pp.
51
56
.
50.
Wesseling
,
P.
,
1992
,
An Introduction to Multigrid Methods
(
Wiley Series in Pure & Applied Maths
),
John Wiley & Sons
,
Chichester, UK
.
51.
Campbell
,
G. S.
, and
Norman
,
J. M.
,
2012
,
An Introduction to Environmental Biophysics
, 2nd ed.,
Springer
,
New York
.
52.
Crank
,
P. J.
,
Sailor
,
D. J.
,
Ban-Weiss
,
G.
, and
Taleghani
,
M.
,
2018
, “
Evaluating the Envi-Met Microscale Model for Suitability in Analysis of Targeted Urban Heat Mitigation Strategies
,”
Urban Clim.
,
26
, pp.
188
197
.
53.
Efron
,
B.
,
Tibshirani
,
R.
, and
Tibshirani
,
R. J.
,
1994
,
An Introduction to the Bootstrap
(
Chapman & Hall/CRC Monographs on Statistics and Applied Probability
),
Chapman & Hall/CRC
,
Philadelphia, PA
.
54.
Mallen
,
E.
,
Bakin
,
J.
,
Stone
,
B.
,
Sivakumar
,
R.
, and
Lanza
,
K.
,
2020
, “
Thermal Impacts of Built and Vegetated Environments on Local Microclimates in an Urban University Campus
,”
Urban Clim.
,
32
, p.
100640
.
55.
Robinson
,
P. J.
,
2001
, “
On the Definition of a Heat Wave
,”
J. Appl. Meteorol.
,
40
(
4
), pp.
762
775
.
56.
Gusson
,
C. S.
, and
Duarte
,
D. H. S.
,
2016
, “
Effects of Built Density and Urban Morphology on Urban Microclimate – Calibration of the Model Envi-Met V4 for the Subtropical Sao Paulo, Brazil
,”
Proc. Eng.
,
169
, pp.
2
10
.
57.
Liu
,
Z.
,
Zheng
,
S.
, and
Zhao
,
L.
,
2018
, “
Evaluation of the Envi-Met Vegetation Model of Four Common Tree Species in a Subtropical Hot-Humid Area
,”
Atmosphere
,
9
(
5
), p.
198
.
58.
Feng
,
W.
,
Ding
,
W.
,
Zhen
,
M.
,
Zou
,
W.
, and
Wang
,
H.
,
2021
, “
Cooling Effect of Urban Small Green Spaces in Qujiang Campus, Xi’an Jiaotong University, China
,”
Environ. Dev. Sustain.
,
24
(
3
), pp.
4278
4298
.
59.
Hadavi
,
M.
, and
Pasdarshahri
,
H.
,
2021
, “
Impacts of Urban Buildings on Microclimate and Cooling Systems Efficiency: Coupled CFD and BES Simulations
,”
Sustain. Cities Soc.
,
67
, p.
102740
.
You do not currently have access to this content.