Abstract

This paper presents an investigation of the performance indices employed in combined or multigeneration thermal systems. Specifically, the following thermal systems will be considered: (1) combined cooling and power (CCP) systems; (2) combined heating and power (CHP) systems; and (3) combined cooling, heating, and power (CCHP) systems. The investigation will highlight the main problems and limitations related to using these indices. We will propose a new procedure for evaluating the performance of CCP systems that can be generalized for use in other combined or multigeneration systems. Employing the subsystems forming any multigeneration system as a reference, the relative saving ratios of energy and exergy are calculated. These saving ratios are used as metrics for the goodness of multigeneration systems. We will also use them to calculate equivalent energetic and exergetic efficiencies of multigeneration systems. These equivalent efficiencies will be used as performance indicators of a multigeneration system as if it were producing only one of its products. The new procedure will be applied to three case studies in this paper. Results of this work indicate that the equivalent exergetic efficiency of power generation (ψP,eqv) is the most meaningful and accurate performance index for assessing the performance of multigeneration systems.

References

1.
Novotny
,
V.
,
Szucs
,
D.
,
Špale
,
J.
,
Tsai
,
H. Y.
, and
Kolovratnik
,
M.
,
2021
, “
Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration
,”
Energies
,
14
(
12
), p.
3715
.
2.
Lior
,
N.
, and
Zhang
,
N.
,
2007
, “
Energy, Exergy, and Second Law Performance Criteria
,”
Energy
,
32
(
4
), pp.
281
296
.
3.
Winterbone
,
D.
, and
Turan
,
A.
,
2015
,
Advanced Thermodynamics for Engineers
,
Butterworth-Heinemann
,
Waltham, MA
.
4.
Vijayaraghavan
,
S.
, and
Goswami
,
D. Y.
,
2003
, “
On Evaluating Efficiency of a Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
125
(
3
), pp.
221
227
.
5.
Rosen
,
M. A.
,
Le
,
M. N.
, and
Dincer
,
I.
,
2005
, “
Efficiency Analysis of a Cogeneration and District Energy System
,”
Appl. Therm. Eng.
,
25
(
1
), pp.
147
159
.
6.
Grassmann
,
P.
,
1950
, “
Zur allgemeinen Definition des Wirkungsgrades
,”
Chem. Ing. Tech.
,
22
(
4
), pp.
77
80
.
7.
Nesselmann
,
K.
,
1953
, “
Der Wirkungsgrad Thermodynamischer Prozesse und sein Zusammenhang mit der Umgebungtemperatur
,”
Allgemeine Wärmetechnik
,
4
(
7
), pp.
141
147
.
8.
Baehr
,
H. D.
,
1968
, “
Zur Definition Exergetischer Wirkungsgrade–Eine Systematische Untersuchung
,”
Brennstoff-Wärme-Kraft
,
20
(
5
), pp.
197
200
.
9.
Szargut
,
J.
,
2005
, Exergy Analysis of Thermal Processes and Systems With Ecological Applications, Theory and Practices for Energy Education, Training, Regulation and Standards, Silesia, Poland, http://www.eolss.net/Sample-Chapters/C08/E3-03-30.pdf
10.
Shankar
,
R.
,
Srinivas
,
T.
, and
Reddy
,
B. V.
,
2017
, “
Thermodynamic Evaluations of Solar Cooling Cogeneration Cycle Using NaSCN–NH3 Mixture
,”
Appl. Sol. Energy
,
53
(
3
), pp.
267
275
.
11.
Xu
,
F.
,
Goswami
,
D. Y.
, and
Bhagwat
,
S. S.
,
2000
, “
A Combined Power/Cooling Cycle
,”
Energy
,
25
(
3
), pp.
233
246
.
12.
Shankar
,
R.
, and
Srinivas
,
T.
,
2014
, “
Development and Analysis of a New Integrated Power and Cooling Plant Using LiBr–H2O Mixture
,”
Sadhana
,
39
(
6
), pp.
1547
1562
.
13.
Zuleta Marín
,
E.
,
Konrad Burin
,
J. S.
, and
Bazzo
,
E.
,
2020
, “
Analysis of a Solar-Aided Natural Gas Cogeneration Plant Applied to the Textile Sector
,”
ASME J. Sol. Energy Eng.
,
142
(
1
), p.
011008
.
14.
Khaliq
,
A.
,
Alharthi
,
M. A.
,
Alqaed
,
S.
,
Mokheimer
,
E. M.
, and
Kumar
,
R.
,
2020
, “
Analysis and Assessment of Tower Solar Collector Driven Trigeneration System
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051003
.
15.
Almatrafi
,
E.
, and
Khaliq
,
A.
,
2021
, “
Investigation of a Novel Solar Powered Trigeneration System for Simultaneous Production of Electricity, Heating, and Refrigeration Below Freezing
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061009
.
16.
Rosen
,
M. A.
, and
Le
,
M. N.
,
1995
, “
Efficiency Measures for Processes Integrating Combined Heat and Power and District Cooling
,”
Thermodynamics and the Design, Analysis and Improvement of Energy Systems IMECE
,
San Francisco, CA
,
Nov. 12–17
,
American Society of Mechanical Engineeris (ASME)
,
New York
, Vol. AES-35, pp.
423
434
.
17.
Demirkaya
,
G.
,
Padilla
,
R. V.
,
Fontalvo
,
A.
,
Bula
,
A.
, and
Goswami
,
D. Y.
,
2018
, “
Experimental and Theoretical Analysis of the Goswami Cycle Operating at Low Temperature Heat Sources
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072005
.
18.
García
,
J. M.
,
Vasquez Padilla
,
R.
, and
Sanjuan
,
M. E.
,
2017
, “
Response Surface Optimization of an Ammonia-Water Combined Power/Cooling Cycle Based on Exergetic Analysis
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022001
.
19.
Shokati
,
N.
,
Ranjbar
,
F.
, and
Yari
,
M.
,
2018
, “
A Comprehensive Exergoeconomic Analysis of Absorption Power and Cooling Cogeneration Cycles Based on Kalina, Part 1: Simulation
,”
Energy Convers. Manage.
,
158
, pp.
437
459
.
20.
Darrow
,
K.
,
Tidball
,
R.
,
Wang
,
J.
, and
Hampson
,
A.
,
2015
, Appendix A: Expressing CHP Efficiency, U.S. Environmental Protection Agency, United States, https://www.epa.gov/sites/default/files/2015-07/documents/catalog_of_chp_technologies_appendix_a_expressing_chp_efficiency.pdf
21.
Horlock
,
J.
,
1987
,
Combined Heat and Power
, Vol.
1
.
Pergamon Books Inc.
,
Elmsford, NY
.
22.
Sadrameli
,
S.
, and
Goswami
,
D. Y.
,
2007
, “
Optimum Operating Conditions for a Combined Power and Cooling Thermodynamic Cycle
,”
Appl. Energy
,
84
(
3
), pp.
254
265
.
23.
Ertesvåg
,
I. S.
,
2007
, “
Exergetic Comparison of Efficiency Indicators for Combined Heat and Power (CHP)
,”
Energy
,
32
(
11
), pp.
2038
2050
.
24.
Cardona
,
E.
, and
Piacentino
,
A.
,
2005
, “
Cogeneration: A Regulatory Framework Toward Growth
,”
Energy Pol.
,
33
(
16
), pp.
2100
2111
.
25.
Rostamzadeh
,
H.
,
Ebadollahi
,
M.
,
Ghaebi
,
H.
,
Amidpour
,
M.
, and
Kheiri
,
R.
,
2017
, “
Energy and Exergy Analysis of Novel Combined Cooling and Power (CCP) Cycles
,”
Appl. Therm. Eng.
,
124
, pp.
152
169
.
26.
Li
,
H.
,
Fu
,
L.
,
Geng
,
K.
, and
Jiang
,
Y.
,
2006
, “
Energy Utilization Evaluation of CCHP Systems
,”
Energy Build.
,
38
(
3
), pp.
253
257
.
27.
Maraver
,
D.
,
Quoilin
,
S.
, and
Royo
,
J.
,
2014
, “
Optimization of Biomass-Fuelled Combined Cooling, Heating and Power (CCHP) Systems Integrated With Subcritical or Transcritical Organic Rankine Cycles (ORCs)
,”
Entropy
,
16
(
5
), pp.
2433
2453
.
28.
Goswami
,
D. Y.
,
1995
, “
Solar Thermal Power: Status of Technologies and Opportunities for Research
,”
Proceedings of the 2nd ASME-ISHMT Heat and Mass Transfer Conference Heat and Mass Transfer 95
,
Tata-McGraw Hill Publishers
,
New Delhi, India
, pp.
57
60
.
29.
Lu
,
S.
, and
Goswami
,
D. Y.
,
2003
, “
Optimization of a Novel Combined Power/Refrigeration Thermodynamic Cycle
,”
ASME J. Solar Energy Eng.
,
125
(
2
), pp.
212
217
.
30.
Alghamdi
,
A.
, and
Sherif
,
S. A.
,
2023
, “
Thermodynamic Analysis and Modeling of a Novel Solar Absorption Cogeneration System With An Adjustable Cooling-to-Power Ratio
,”
ASME J. Sol. Energy Eng.
,
145
(
4
), p.
041001
.
You do not currently have access to this content.