Abstract

Particle-to-supercritical carbon dioxide (sCO2) heat exchanger is a critical component in next-generation concentrating solar power (CSP) plants. The inherently low heat transfer between falling particles and sCO2 imposes a challenge toward economic justification of levelized cost of electricity produced through solar energy. Introduction of integrated porous media with the walls bounding particle flow has the potential to enhance the overall particle-to-sCO2 heat exchanger performance. This paper presents an experimental study on heat transfer characterization of additively manufactured lattice frame material based on Octet-shaped unit cell with particles and air as working fluids. The lattice structures were additively manufactured in stainless steel (SS) 316L and SS420 (with 40% bronze infiltration) via Binder jetting process, where the lattice porosities were varied between 0.75 and 0.9. The mean particle diameters were varied from 266 μm to 966 μm. The effective thermal conductivity and averaged heat transfer coefficient were determined through steady-state experiments. It was found that the presence of lattice enhances the effective thermal conductivity by 2–4 times when compared to packed bed of particles alone. Furthermore, for gravity-assisted particle flow through lattice panel, significantly high convective heat transfer coefficients ranging from 200 W/m2K to 400 W/m2K were obtained for the range of particle diameters tested. The superior thermal transport properties of Octet-shape-based lattice frame for particle flow makes it a very promising candidate for particle-to-sCO2 heat exchanger for CSP application.

References

1.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
2.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
, and
Kruizenga
,
A.
,
2017
, “Concentrating Solar Power Gen3 Demonstration Roadmap (No. NREL/TP-5500-67464),” National Renewable Energy Laboratory (NREL), Golden, CO
.
3.
Wilson
,
G.
,
Sahoo
,
S.
,
Sabharwal
,
P.
, and
Bindra
,
H.
,
2019
, “Chapter Seven—Packed Bed Thermal Storage for LWRs,”
Storage and Hybridization of Nuclear Energy
,
H.
Bindra
, and
S.
Revankar
, eds.,
Academic Press
,
Cambridge, MA
, pp.
229
248
.
4.
Zhu
,
Q.
,
Tan
,
X.
,
Barari
,
B.
,
Caccia
,
M.
,
Strayer
,
A. R.
,
Pishahang
,
M.
,
Sandhage
,
K. H.
, and
Henry
,
A.
,
2021
, “
Design of a 2 MW ZrC/W-Based Molten-Salt-to-sCO2 PCHE for Concentrated Solar Power
,”
Appl. Energy
,
300
, p.
117313
.
5.
Ho
,
C. K.
,
2016
, “
A Review of High-Temperature Particle Receivers for Concentrating Solar Power
,”
Appl. Therm. Eng.
,
109
, pp.
958
969
.
6.
Martinek
,
J.
, and
Ma
,
Z.
,
2015
, “
Granular Flow and Heat-Transfer Study in a Near-Blackbody Enclosed Particle Receiver
,”
ASME J. Sol. Energy Eng.
,
137
(
5
), p.
051008
.
7.
Besarati
,
S. M.
,
Yogi Goswami
,
D.
, and
Stefanakos
,
E. K.
,
2015
, “
Development of a Solar Receiver Based on Compact Heat Exchanger Technology for Supercritical Carbon Dioxide Power Cycles
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031018
.
8.
Siegel
,
N. P.
,
Gross
,
M. D.
, and
Coury
,
R.
,
2015
, “
The Development of Direct Absorption and Storage Media for Falling Particle Solar Central Receivers
,”
ASME J. Sol. Energy Eng.
,
137
(
4
), p.
041003
.
9.
Wu
,
W.
,
Trebing
,
D.
,
Amsbeck
,
L.
,
Buck
,
R.
, and
Pitz-Paal
,
R.
,
2015
, “
Prototype Testing of a Centrifugal Particle Receiver for High-Temperature Concentrating Solar Applications
,”
ASME J. Sol. Energy Eng.
,
137
(
4
), p.
041011
.
10.
Siegel
,
N. P.
,
Ho
,
C. K.
,
Khalsa
,
S. S.
, and
Kolb
,
G. J.
,
2010
, “
Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
021008
.
11.
Pouransari
,
H.
, and
Mani
,
A.
,
2016
, “
Effects of Preferential Concentration on Heat Transfer in Particle-Based Solar Receivers
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021008
.
12.
Ho
,
C. K.
,
Christian
,
J. M.
,
Romano
,
D.
,
Yellowhair
,
J.
,
Siegel
,
N.
,
Savoldi
,
L.
, and
Zanino
,
R.
,
2016
, “
Characterization of Particle Flow in a Free-Falling Solar Particle Receiver
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021011
.
13.
Hertel
,
J. D.
, and
Zunft
,
S.
,
2022
, “
Experimental Validation of a Continuum Model for Local Heat Transfer in Shell-and-Tube Moving-Bed Heat Exchangers
,”
Appl. Therm. Eng.
,
206
, p.
118092
.
14.
Tian
,
X.
,
Guo
,
Z.
,
Jia
,
H.
,
Yang
,
J.
, and
Wang
,
Q.
,
2021
, “
Numerical Investigation of a New Type Tube for Shell-and-Tube Moving Packed Bed Heat Exchanger
,”
Powder Technol.
,
394
, pp.
584
596
.
15.
Maskalunas
,
J.
,
Nellis
,
G.
, and
Anderson
,
M.
,
2022
, “
The Heat Transfer Coefficient Associated With a Moving Packed Bed of Silica Particles Flowing Through Parallel Plates
,”
Sol. Energy
,
234
, pp.
294
303
.
16.
Ho
,
C. K.
,
Carlson
,
M.
,
Albrecht
,
K. J.
,
Ma
,
Z.
,
Jeter
,
S.
, and
Nguyen
,
C. M.
,
2019
, “
Evaluation of Alternative Designs for a High Temperature Particle-to-sCO2 Heat Exchanger
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021001
.
17.
Kaur
,
I.
, and
Singh
,
P.
,
2020
, “
Flow and Thermal Transport Through Unit Cell Topologies of Cubic and Octahedron Families
,”
Int. J. Heat Mass Transfer
,
158
, p.
119784
.
18.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Endwall Heat Transfer Characteristics of Octahedron Family Lattice-Frame Materials
,”
Int. Commun. Heat Mass Transf.
,
127
, p.
105522
.
19.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Numerical Investigation on Conjugate Heat Transfer in Octet-Shape-Based Single Unit Cell Thick Metal Foam
,”
Int. Commun. Heat Mass Transf.
,
121
, p.
105090
.
20.
Kaur
,
I.
,
Aider
,
Y.
,
Nithyanandam
,
K.
, and
Singh
,
P.
,
2022
, “
Thermal-Hydraulic Performance of Additively Manufactured Lattices for Gas Turbine Blade Trailing Edge Cooling
,”
Appl. Therm. Eng.
,
211
, p.
118461
.
21.
Aider
,
Y.
,
Kaur
,
I.
,
Cho
,
H.
, and
Singh
,
P.
,
2022
, “
Periodic Heat Transfer Characteristics of Additively Manufactured Lattices
,”
Int. J. Heat Mass Transf.
,
189
, p.
122692
.
22.
Kaur
,
I.
,
Mahajan
,
R. L.
, and
Singh
,
P.
,
2023
, “
Generalized Correlation for Effective Thermal Conductivity of High Porosity Architectured Materials and Metal Foams
,”
Int. J. Heat Mass Transf.
,
200
, p.
123512
.
23.
Chung
,
K. M.
,
Zeng
,
J.
,
Adapa
,
S. R.
,
Feng
,
T.
,
Bagepalli
,
M. V.
,
Loutzenhiser
,
P. G.
,
Albrecht
,
K. J.
,
Ho
,
C. K.
, and
Chen
,
R.
,
2021
, “
Measurement and Analysis of Thermal Conductivity of Ceramic Particle Beds for Solar Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
230
, p.
111271
.
24.
Chen
,
C.
,
Yang
,
C.
,
Ranjan
,
D.
,
Loutzenhiser
,
P. G.
, and
Zhang
,
Z. M.
,
2020
, “
Spectral Radiative Properties of Ceramic Particles for Concentrated Solar Thermal Energy Storage Applications
,”
Int. J. Thermophys.
,
41
(
11
), pp.
1
25
.
25.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
.
26.
Aider
,
Y.
,
Cho
,
H.
, and
Singh
,
P.
,
2022
, “
Convective Heat Transfer Potential of Particles/Airflow Through Single Cell Thick Additively Manufactured Octet-Shaped Lattice Frame Material
,”
Proceedings of the ASME 2022 Heat Transfer Summer Conference Collocated With the ASME 2022 16th International Conference on Energy Sustainability. ASME 2022 Heat Transfer Summer Conference
,
Philadelphia, PA
,
July 11–13
,
ASME
, p.
V001T06A004
.
27.
Kaur
,
I.
, and
Singh
,
P.
,
2022
, “
Direct Pore-Scale Simulations of Fully Periodic Unit Cells of Different Regular Lattices
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
2
), p.
022702
.
You do not currently have access to this content.