Abstract

This paper compares the difference and accuracy of bursting pressure prediction based on the flow stress σf prediction method, plastic collapse prediction method, and ductile damage model prediction method in Inconel 690 steam generator tube (SGT) with volume defect. The tensile and smooth tube bursting tests determine the parameters required for the three prediction methods. The three methods predict the bursting pressures for four deep volume defects in SGT. The results are compared and analyzed with the experimental data. The results show that the ductile damage model prediction method is the best to predict the SGT bursting pressure error with volume defects simulating the structure's deformation and damage failure process.

References

1.
Mei
,
J. N.
,
Han
,
Y. L.
,
Wang
,
P.
, and
Cai
,
Z.
,
2022
, “
Effects of Impact on the Fretting Wear Behavior of Steam Generator Tubes
,”
Equip. Environ. Eng.
,
19
(
12
), pp.
104
112
.
2.
Scott
,
P.
,
Combrade
,
P.
,
Kilian
,
R.
,
Roth
,
A.
,
Andresen
,
P.
, and
Kim
,
Y.
,
2005
, “
Status Review of Initiation of Environmentally Assisted Cracking and Short Crack Growth
,” Electric Power Research Institute, Palo Alto, CA, EPRI Report No.
1011788
.https://www.epri.com/research/products/1011788
3.
Ford
,
F.
, and
McGehee
,
A.
,
2006
, “
Repair and Replacement Applications Center: Stress Corrosion Cracking in Closed Cooling Water Systems
,” Electric Power Research Institute, Palo Alto, CA, EPRI Report No. 1013563.
4.
Carroll
,
L. B.
,
2017
, “
Nuclear Steam Generator Fitness-for-Service Assessment
,”
Steam Generators for Nuclear Power Plants
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
511
523
.10.1016/B978-0-08-100894-2.00019-4
5.
Majumdar
,
S.
,
Bakhtiari
,
S.
,
Zeng
,
Z.
, and
Bahn
,
C. B.
,
2017
, “
Structural Integrity Assessment of Nuclear Steam Generator
,”
Steam Generators for Nuclear Power Plants
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
435
–4
69
.10.1016/B978-0-08-100894-2.00016-9
6.
Hui
,
H.
,
Li
,
P. N.
,
Tang
,
Y.
,
Nie
,
Y.
,
Liu
,
H. Y.
, and
Li
,
S. Y.
,
2008
, “
Study of Strength and Plugging Criteria for Inconel 690 Steam Generator Tubes With Flaw
,”
Atomic Energy Sci. Technol.
,
42
(
z2
), pp.
634
640
.
7.
Chen
,
S. Y.
,
2006
, “
Method to Obtain the Yield Limit and the Flow Stress and the Plastic Limit Load of Structure
,”
Selected Collection of Research Progress of Pressure Pipeline Technology
, China Academic Journal Electronic Publishing House,
Urumqi
, China, pp.
60
66
.
8.
Shen
,
S. M.
, and
Zheng
,
Y. X.
,
2004
, “
The Limit Loads and Safety Assessment of the Pipe With Lat
,”
China Pet. Mach.
,
32
(
6
), pp.
17
20
.
9.
GB/T 19624
,
2019
,
Safety Assessment of in-Service Pressure Vessels Containing Defects
,
Standardization Administration of the People's Republic of China
,
Beijing, China
.
10.
Azodi
,
D.
,
Schulz
,
H.
, and
Arenz
,
R.
,
1990
, “
The Integrity of Steam Generator Tubes and Plugging Assessment
,”
Res Mech.
,
31
(
1
), pp.
61
75
.
11.
Hui
,
H.
,
Li
,
Z. Q.
,
Zhang
,
L. Y.
,
Jiao
,
M.
, and
Li
,
P. N.
,
2011
, “
Study on Numerical Simulation of Bursting Pressure of Steam Generator Tubes With Local Wall-Thinning
,”
Nucl. Power Eng.
,
32
(
S1
), pp.
69
72
.
12.
Moon
,
S. I.
,
Chang
,
Y. S.
,
Kim
,
Y. J.
,
Lee
,
J. H.
,
Song
,
M. H.
, and
Choi
,
Y. H.
,
2005
, “
Evaluation of Plastic Collapse Pressure for Steam Generator Tube With Non-Aligned Two Axial Through-Wall Cracks
,”
Trans. Korean Soc. Mech. Eng. A
,
29
(
8
), pp.
1070
1077
.10.3795/KSME-A.2005.29.8.1070
13.
Moon
,
S. ‐I.
,
Chang
,
Y. ‐S.
,
Kim
,
Y. ‐J.
,
Lee
,
J. ‐H.
,
Song
,
M. ‐H.
,
Choi
,
Y. ‐H.
, and
Kim
,
J. ‐S.
,
2006
, “
Determination of Global Failure Pressure for Tubes With Two Parallel Cracks
,”
Fatigue Fract. Eng. Mater. Struct.
,
29
(
8
), pp.
623
631
.10.1111/j.1460-2695.2006.01038.x
14.
Francisco
,
A. S.
,
Ouverney
,
T. M. W.
, and
Moreira
,
L. P.
,
2022
, “
A Comparison of the Structural Integrity of Steam Generator Tubes Based on Deterministic and Probabilistic Crack Acceptance Criteria
,”
J. Braz. Soc. Mech. Sci. Eng.
,
44
(
3
), p.
74
.10.1007/s40430-022-03380-7
15.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.10.1115/1.3443401
16.
Tvergaard
,
V.
,
1988
, “
3D-Analysis of Localization Failure in a Ductile Material Containing Two Size-Scales of Spherical Particles
,”
Eng. Fract. Mech.
,
31
(
3
), pp.
421
436
.10.1016/0013-7944(88)90085-9
17.
Rousselier
,
G.
,
1987
, “
Ductile Fracture Models and Their Potential in Local Approach of Fracture
,”
Nucl. Eng. Des.
,
105
(
1
), pp.
97
111
.10.1016/0029-5493(87)90234-2
18.
Hancock
,
J. W.
, and
Brown
,
D. K.
,
1983
, “
On the Role of Strain and Stress State in Ductile Failure
,”
J. Mech. Phys. Solids
,
31
(
1
), pp.
1
24
.10.1016/0022-5096(83)90017-0
19.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.10.1016/0013-7944(85)90052-9
20.
Lee
,
M.-W.
,
Kim
,
J.-S.
,
Jeon
,
J.-Y.
,
Kim
,
Y.-J.
,
Kim
,
J.-W.
, and
Kim
,
J.-S.
,
2018
, “
Comparison of Numerical Predictions With Experimental Burst Pressures of Tubes With Multiple Surface Cracks
,”
Eng. Fract. Mech.
,
201
, pp.
176
195
.10.1016/j.engfracmech.2018.06.016
21.
Oh
,
C. S.
,
Kim
,
N. H.
,
Kim
,
Y. J.
,
Baek
,
J. H.
,
Kim
,
Y. P.
, and
Kim
,
W. S.
,
2011
, “
A Finite Element Ductile Failure Simulation Method Using Stress-Modified Fracture Strain Model
,”
Eng. Fract. Mech.
,
78
(
1
), pp.
124
137
.10.1016/j.engfracmech.2010.10.004
22.
Kim
,
J. S.
,
Lee
,
M. W.
,
Kim
,
Y.
,
J.
, and
Kim
,
J. W.
,
2019
, “
Numerical Validation of Burst Pressure Estimation Equations for Steam Generator Tubes With Multiple Axial Surface Cracks
,”
Nucl. Eng. Technol.
,
51
(
2
), pp.
579
587
.10.1016/j.net.2018.10.013
23.
Jeon
,
J. Y.
,
Kim
,
Y. J.
,
Kim
,
J. W.
, and
Kim
,
J. S.
,
2015
, “
Burst Simulations of Steam Generator Tubes Using Fe Damage Analyses
,”
Paper Presented at the Recent Advances in Structural Integrity Analysis-Proceedings of the International Congress
, APCF/SIF-2014:APCFS/SIF 2014, July 19–23, Boston, New York.10.1533/9780081002254.274
24.
Jeon
,
J. Y.
,
Kim
,
Y. J.
,
Kim
,
J. W.
,
Lee
,
K. H.
, and
Kim
,
J. S.
,
2016
, “
Numerical Prediction of Maximum Load-Carrying Capacity of Cracked Alloy 690tt Steam Generator Tubes
,”
ASME J. Pressure Vessel Technol.
,
138
(
4
), p.
041601
.10.1115/1.4031746
25.
GB/T 228.2
,
2015
,
Metallic Materials-Tensile Testing-Part 2: Method of Test at Elevated Temperature
,
Standardization Administration of the People's Republic of China
,
Beijing, China
.
26.
GB/T 241
,
2007
,
Metal Materials-Tube-Hydrostatic Pressure Test
,
Standardization Administration of the People's Republic of China
,
Beijing, China
.
27.
Chu
,
K.
,
Xiao
,
Y. T.
,
Huang
,
S.
,
Hui
,
H.
, and
Zhong
,
Z. M.
,
2021
, “
Study on Burst Pressure Prediction of Heat Transfer Tube With Uniform Thinning Defect
,”
Manuf. Upgrading Today
,
12
, pp.
64
68
.
You do not currently have access to this content.