Abstract

This study explores the investigation of the nonlinear dynamic responses or time-dependent deflection analysis of a laminated composite shell panel integrated with a shape memory alloy (SMA), considering both undamaged and damaged set-ups. The primary focus of this research is to examine the impact of SMA incorporation on the structural behavior of the parent configuration, aimed at enhancing its structural stiffness. To ensure the validity of the proposed model, sensitivity analyses and numerical validations are presented. The mathematical framework employed in this study employs the higher-order shear deformation theory (HSDT), which offers enhanced accuracy in capturing the intricate behaviors of these shell panels. The dynamic responses are obtained using the Newmark average acceleration method. Numerical simulations are carried out using a dedicated MATLAB code developed in-house, allowing amplified correctness in outcomes and widespread analysis. The study thoroughly assesses a range of geometric parameters and those relevant to SMA for both intact and impaired shell panels. The outcomes of the investigation reveal affirmative findings, underscoring notable improvements in structural strength and enhanced nonlinear dynamic responses through the introduction of SMA reinforcement into the composite shell panel.

References

1.
Reddy
,
J. N.
,
1983
, “
Geometrically Nonlinear Transient Analysis of Laminated Composite Plates
,”
AIAA J.
,
21
(
4
), pp.
621
629
.10.2514/3.8122
2.
Reddy
,
J. N.
, and
Chandrashekhara
,
K.
,
1985
, “
Geometrically Non-Linear Transient Analysis of Laminated, Doubly Curved Shells
,”
Int. J. Non Linear Mech.
,
20
(
2
), pp.
79
90
.10.1016/0020-7462(85)90002-2
3.
Kant
,
T.
,
1991
, “
Non-Linear Dynamics of Laminated Plates With a Higher-Order Theory and C0 Finite Elements
,”
Int. J. Non Linear Mech.
,
26
(
3–4
), pp.
335
343
.10.1016/0020-7462(91)90063-Y
4.
Lee
,
S. J.
, and
Reddy
,
J. N.
,
2005
, “
Non-Linear Response of Laminated Composite Plates Under Thermomechanical Loading
,”
Int. J. Non Linear Mech.
,
40
(
7
), pp.
971
985
.10.1016/j.ijnonlinmec.2004.11.003
5.
Chandrashekhara
,
K.
, and
Tenneti
,
R.
,
1994
, “
Non-Linear Static and Dynamic Analysis of Heated Laminated Plates: A Finite Element Approach
,”
Compos. Sci. Technol.
,
51
(
1
), pp.
85
94
.10.1016/0266-3538(94)90159-7
6.
Kundu
,
C. K.
, and
Sinha
,
P. K.
,
2006
, “
Nonlinear Transient Analysis of Laminated Composite Shells
,”
J. Reinf. Plast. Compos.
,
25
(
11
), pp.
1129
1147
.10.1177/0731684406065196
7.
To
,
C. W.
, and
Wang
,
B.
,
1998
, “
Transient Responses of Geometrically Nonlinear Laminated Composite Shell Structures
,”
Finite Elem. Anal. Des.
,
31
(
2
), pp.
117
134
.10.1016/S0168-874X(98)00054-7
8.
Sharma
,
A.
,
Nath
,
Y.
, and
Sharda
,
H. B.
,
2007
, “
Nonlinear Transient Analysis of Moderately Thick Laminated Composite Sector Plates
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
(
6
), pp.
1101
1114
.10.1016/j.cnsns.2005.10.005
9.
Chen
,
J.
,
Dawe
,
D.
, and
Wang
,
S.
,
2000
, “
Nonlinear Transient Analysis of Rectangular Composite Laminated Plates
,”
Compos. Struct.
,
49
(
2
), pp.
129
139
.10.1016/S0263-8223(99)00108-7
10.
Kazancı
,
Z.
, and
Mecitoğlu
,
Z.
,
2008
, “
Nonlinear Dynamic Behavior of Simply Supported Laminated Composite Plates Subjected to Blast Load
,”
J. Sound Vib.
,
317
(
3–5
), pp.
883
897
.10.1016/j.jsv.2008.03.033
11.
Kurtaran
,
H.
,
2015
, “
Geometrically Nonlinear Transient Analysis of Moderately Thick Laminated Composite Shallow Shells With Generalized Differential Quadrature Method
,”
Compos. Struct.
,
125
, pp.
605
614
.10.1016/j.compstruct.2015.02.045
12.
Akgün
,
G.
, and
Kurtaran
,
H.
,
2018
, “
Geometrically Nonlinear Transient Analysis of Laminated Composite Super-Elliptic Shell Structures With Generalized Differential Quadrature Method
,”
Int. J. Non Linear Mech.
,
105
(
May
), pp.
221
241
.10.1016/j.ijnonlinmec.2018.05.016
13.
Beheshti
,
A.
, and
Ansari
,
R.
,
2023
, “
Nonlinear Dynamic Analysis of Unsymmetric Layered Composite Shells
,”
Compos. Struct.
,
307
(
December 2022
), p.
116627
.10.1016/j.compstruct.2022.116627
14.
Thakur
,
B. R.
,
Verma
,
S.
,
Singh
,
B. N.
, and
Maiti
,
D. K.
,
2021
, “
Geometrically Nonlinear Dynamic Analysis of Laminated Composite Plate Using a Nonpolynomial Shear Deformation Theory
,”
Int. J. Non Linear Mech.
,
128
(
November 2020
), p.
103635
.10.1016/j.ijnonlinmec.2020.103635
15.
Gupta
,
A.
, and
Pradyumna
,
S.
,
2022
, “
Geometrically Nonlinear Dynamic Analysis of Variable Stiffness Composite Laminated and Sandwich Shell Panels
,”
Thin-Walled Struct.
,
173
(
February
), p.
109021
.10.1016/j.tws.2022.109021
16.
Sharma
,
N.
,
Swain
,
P. K.
,
Maiti
,
D. K.
, and
Singh
,
B. N.
,
2022
, “
Static and Free Vibration Analyses and Dynamic Control of Smart Variable Stiffness Laminated Composite Plate With Delamination
,”
Compos. Struct.
,
280
(
May 2021
), p.
114793
.10.1016/j.compstruct.2021.114793
17.
Nanda
,
N.
, and
Bandyopadhyay
,
J. N.
,
2008
, “
Nonlinear Transient Response of Laminated Composite Shells
,”
J. Eng. Mech.
,
134
(
11
), pp.
983
990
.10.1061/(ASCE)0733-9399(2008)134:11(983)
18.
Nanda
,
N.
, and
Bandyopadhyay
,
J. N.
,
2009
, “
Geometrically Nonlinear Transient Analysis of Laminated Composite Shells Using the Finite Element Method
,”
J. Sound Vib.
,
325
(
1–2
), pp.
174
185
.10.1016/j.jsv.2009.02.044
19.
Nanda
,
N.
, and
Pradyumna
,
S.
,
2011
, “
Nonlinear Dynamic Response of Laminated Shells With Imperfections in Hygrothermal Environments
,”
J. Compos. Mater.
,
45
(
20
), pp.
2103
2112
.10.1177/0021998311401061
20.
Hirwani
,
C. K.
,
Panda
,
S. K.
, and
Mahapatra
,
T. R.
,
2018
, “
Nonlinear Finite Element Analysis of Transient Behavior of Delaminated Composite Plate
,”
ASME J. Vib. Acoust.
,
140
(
2
), p.
021001
.10.1115/1.4037848
21.
Khalili
,
S.
, and
Saeedi
,
A.
,
2018
, “
Dynamic Response of Laminated Composite Beam Reinforced With Shape Memory Alloy Wires Subjected to Low Velocity Impact of Multiple Masses
,”
J. Compos. Mater.
,
52
(
8
), pp.
1089
1101
.10.1177/0021998317722042
22.
Khalili
,
S. M. R.
,
Botshekanan Dehkordi
,
M.
,
Carrera
,
E.
, and
Shariyat
,
M.
,
2013
, “
Non-Linear Dynamic Analysis of a Sandwich Beam With Pseudoelastic SMA Hybrid Composite Faces Based on Higher Order Finite Element Theory
,”
Compos. Struct.
,
96
, pp.
243
255
.10.1016/j.compstruct.2012.08.020
23.
Khalili
,
S. M. R.
,
Botshekanan Dehkordi
,
M.
, and
Shariyat
,
M.
,
2013
, “
Modeling and Transient Dynamic Analysis of Pseudoelastic SMA Hybrid Composite Beam
,”
Appl. Math. Comput.
,
219
(
18
), pp.
9762
9782
.10.1016/j.amc.2013.03.092
24.
Guida
,
M.
,
Sellitto
,
A.
,
Marulo
,
F.
, and
Riccio
,
A.
,
2019
, “
Analysis of the Impact Dynamics of Shape Memory Alloy Hybrid Composites for Advanced Applications
,”
Materials
,
12
(
1
), p.
153
.10.3390/ma12010153
25.
Hao
,
Y.
,
Gao
,
M.
,
Hu
,
Y.
, and
Li
,
Y.
,
2021
, “
Nonlinear Dynamic Analysis of Axially Moving Laminated Shape Memory Alloy Beam With 1:3 Internal Resonance
,”
Materials
,
14
(
14
), p.
4022
.10.3390/ma14144022
26.
Botshekanan Dehkordi
,
M.
,
Khalili
,
S. M. R.
, and
Carrera
,
E.
,
2016
, “
Non-Linear Transient Dynamic Analysis of Sandwich Plate With Composite Face-Sheets Embedded With Shape Memory Alloy Wires and Flexible Core- Based on the Mixed LW (Layer-Wise)/ESL (Equivalent Single Layer) Models
,”
Compos. Part B Eng.
,
87
, pp.
59
74
.10.1016/j.compositesb.2015.10.008
27.
Ghaznavi
,
A.
, and
Shariyat
,
M.
,
2017
, “
Non-Linear Layerwise Dynamic Response Analysis of Sandwich Plates With Soft Auxetic Cores and Embedded SMA Wires Experiencing Cyclic Loadings
,”
Compos. Struct.
,
171
, pp.
185
197
.10.1016/j.compstruct.2017.03.012
28.
Ramezani
,
M.
,
Rezaiee-Pajand
,
M.
, and
Tornabene
,
F.
,
2022
, “
Nonlinear Dynamic Analysis of FG/SMA/FG Sandwich Cylindrical Shells Using HSDT and Semi ANS Functions
,”
Thin-Walled Struct.
,
171
, p.
108702
.10.1016/j.tws.2021.108702
29.
Ghomshei
,
M. M.
,
Tabandeh
,
N.
,
Ghazavi
,
A.
, and
Gordaninejad
,
F.
,
2005
, “
Nonlinear Transient Response of a Thick Composite Beam With Shape Memory Alloy Layers
,”
Compos. Part B Eng.
,
36
(
1
), pp.
9
24
.10.1016/j.compositesb.2004.04.004
30.
Ozair
,
H.
,
Baluch
,
A. H.
,
Ur Rehman
,
M. A.
, and
Wadood
,
A.
,
2022
, “
Shape Memory Hybrid Composites
,”
ACS Omega
,
7
(
41
), pp.
36052
36069
.10.1021/acsomega.2c02436
31.
Lei
,
M.
,
Chen
,
Z.
,
Lu
,
H.
, and
Yu
,
K.
,
2019
, “
Recent Progress in Shape Memory Polymer Composites: Methods, Properties, Applications and Prospects
,”
Nanotechnol. Rev.
,
8
(
1
), pp.
327
351
.10.1515/ntrev-2019-0031
32.
Xu
,
R.
,
Bouby
,
C.
,
Zahrouni
,
H.
,
Ben Zineb
,
T.
,
Hu
,
H.
, and
Potier-Ferry
,
M.
,
2018
, “
3D Modeling of Shape Memory Alloy Fiber Reinforced Composites by Multiscale Finite Element Method
,”
Compos. Struct.
,
200
(
April
), pp.
408
419
.10.1016/j.compstruct.2018.05.108
33.
Reddy
,
J. N.
,
2003
,
Mechanics of Laminated Composite Plates and Shells
,
CRC Press
,
Boca Raton, FL
.
34.
Mahapatra
,
T. R.
,
Kar
,
V. R.
, and
Panda
,
S. K.
,
2016
, “
Large Amplitude Bending Behaviour of Laminated Composite Curved Panels
,”
Eng. Comput.
,
33
(
1
), pp.
116
138
.10.1108/EC-05-2014-0119
35.
Mehar
,
K.
,
Panda
,
S. K.
, and
Dewangan
,
H. C.
,
2020
, “
Multiscale Finite Element Prediction of Thermomechanical Flexural Strength of Nanotube-Reinforced Hybrid Smart Composite Panel Bonded With SMA Fibre
,”
Structures
,
28
, pp.
2300
2310
.10.1016/j.istruc.2020.10.049
36.
Elwaleed
,
A. K.
,
2018
, “
Shape Memory Alloys: Identification of the Parameters Necessary for Constitutive Models
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
453
(
1
), p.
012027
.10.1088/1757-899X/453/1/012027
37.
Mehar
,
K.
,
Mishra
,
P. K.
, and
Panda
,
S. K.
,
2021
, “
Thermal Post-Buckling Strength Prediction and Improvement of Shape Memory Alloy Bonded Carbon Nanotube-Reinforced Shallow Shell Panel: A Nonlinear Finite Element Micromechanical Approach
,”
ASME J. Pressure Vessel Technol.
,
143
(
6
), p.
061301
.10.1115/1.4050934
38.
Katariya
,
P. V.
,
Mehar
,
K.
, and
Panda
,
S. K.
,
2020
, “
Nonlinear Dynamic Responses of Layered Skew Sandwich Composite Structure and Experimental Validation
,”
Int. J. Non Linear Mech.
,
125
(
June
), p.
103527
.10.1016/j.ijnonlinmec.2020.103527
39.
Park
,
J.-S.
,
Kim
,
J.-H.
, and
Moon
,
S.-H.
,
2004
, “
Vibration of Thermally Post-Buckled Composite Plates Embedded With Shape Memory Alloy Fibers
,”
Compos. Struct.
,
63
(
2
), pp.
179
188
.10.1016/S0263-8223(03)00146-6
40.
Mehar
,
K.
,
Mishra
,
P. K.
, and
Panda
,
S. K.
,
2021
, “
Numerical Investigation of Thermal Frequency Responses of Graded Hybrid Smart Nanocomposite (CNT-SMA-Epoxy) Structure
,”
Mech. Adv. Mater. Struct.
,
28
(
21
), pp.
2242
2254
.10.1080/15376494.2020.1725193
41.
Mehar
,
K.
,
Panda
,
S. K.
, and
Mahapatra
,
T. R.
,
2019
, “
Large Deformation Bending Responses of Nanotube-Reinforced Polymer Composite Panel Structure: Numerical and Experimental Analyses
,”
Proc. Inst. Mech. Eng., Part G
,
233
(
5
), pp.
1695
1704
.10.1177/0954410018761192
42.
Erukala
,
K. K.
,
Mishra
,
P. K.
,
Dewangan
,
H. C.
,
Panda
,
S. K.
, and
Dwivedi
,
M.
,
2022
, “
Damaged Composite Structural Strength Enhancement Under Elevated Thermal Environment Using Shape Memory Alloy Fiber
,”
Acta Mech.
,
233
(
8
), pp.
3133
3155
.10.1007/s00707-022-03272-w
43.
Kumar
,
E. K.
,
Panda
,
S. K.
,
Dwivedi
,
M.
,
Mahmoud
,
S. R.
, and
Balubaid
,
M.
,
2023
, “
Numerical Thermal Frequency Prediction of Smart Composite Structure and Experimental Validation
,”
Structures
,
47
(
October 2022
), pp.
2408
2421
.10.1016/j.istruc.2022.12.066
44.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2009
,
Concepts and Applications of Finite Element Analysis
,
Wiley Pvt. Ltd
,
Singapore
.
45.
Kumar
,
E. K.
,
Sharma
,
N.
,
Panda
,
S. K.
, and
Mahmoud
,
S. R.
,
2022
, “
Numerical Prediction of Thermal Buckling Load Parameters of Damaged Polymeric Layered Composite Structure and Reversal of Strength Using SMA Fibre
,”
Arch. Appl. Mech.
,
92
(
12
), pp.
3829
3845
.10.1007/s00419-022-02265-4
46.
Kumar
,
E. K.
,
Panda
,
S. K.
,
Mahmoud
,
S. R.
, and
Balubaid
,
M.
,
2023
, “
Influence of Active SMA Fibre on Deflection Recovery Characteristics of Damaged Laminated Composite Theoretical and Experimental Analysis
,”
Fibers Polym.
,
24
(
9
), pp.
3261
3277
.10.1007/s12221-023-00277-7
You do not currently have access to this content.