Abstract

Printed circuit heat exchanger (PCHE) is a type of compact heat exchanger with high thermal efficiency, more compact, and suitable for high pressure and high temperature conditions. The safety assessment of PCHE is very important, especially for PCHE core. Because PHCE core is different from the PCHE headers which are typical pressure vessel components. However, there is no standard design method to ensure the structural integrity for PCHE core. Some failure modes of PCHE core are studied in recent years, but seldom researches have been conducted concerning the fracture behavior of PCHE core. In addition, the phase field method for fracture has developed rapidly in recent years with its advantages in predicting crack initiation, bifurcation, and merging. In this work, the fracture behavior of PCHE core with and without defects is investigated based on elasto-plastic phase field method. The model parameter of Ni-based Alloy for elasto-plastic phase field method is first calibrated by comparing the numerical results with tensile test data of diffusion-bonded PHCE core specimen. Then, the influence of loading directions, defect locations, and defect sizes on the fracture behavior of PCHE core with semicircular and semicircular-rectangular channels are analyzed. Some conclusions are discussed.

References

1.
Saeed
,
M.
, and
Kim
,
M. H.
,
2017
, “
Thermal and Hydraulic Performance of sCO2 PCHE With Different Fin Configurations
,”
Appl. Therm. Eng.
,
127
, pp.
975
985
.10.1016/j.applthermaleng.2017.08.113
2.
Chang
,
H.
,
Han
,
Z.
,
Li
,
X.
,
Ma
,
T.
, and
Wang
,
Q.
,
2022
, “
Experimental Study on Heat Transfer Performance of sCO2 Near Pseudo-Critical Point in Airfoil-Fin PCHE From Viewpoint of Average Thermal-Resistance Ratio
,”
Int. J. Heat Mass Transfer
,
196
, p.
123257
.10.1016/j.ijheatmasstransfer.2022.123257
3.
Mahajan
,
H. P.
,
Devi
,
U.
, and
Hassan
,
T.
,
2018
, “
Finite Element Analysis of Printed Circuit Heat Exchanger Core for High Temperature Creep and Burst Responses
,”
ASME
Paper No. PVP2018-84748. 10.1115/PVP2018-84748
4.
Katz
,
A.
, and
Ranjan
,
D.
,
2019
, “
Advances Towards Elastic-Perfectly Plastic Simulation of the Core of Printed Circuit Heat Exchangers
,”
ASME
Paper No. PVP2019-93807. 10.1115/PVP2019-93807
5.
Liu
,
G.
,
Huang
,
Y.
,
Wang
,
J.
, and
Liu
,
R.
,
2020
, “
A Review on the Thermal-Hydraulic Performance and Optimization of Printed Circuit Heat Exchangers for Supercritical CO2 in Advanced Nuclear Power Systems
,”
Renewable Sustainable Energy Rev.
,
133
, p.
110290
.10.1016/j.rser.2020.110290
6.
Wang
,
W.-Q.
,
Qiu
,
Y.
,
He
,
Y.-L.
, and
Shi
,
H.-Y.
,
2019
, “
Experimental Study on the Heat Transfer Performance of a Molten-Salt Printed Circuit Heat Exchanger With Airfoil Fins for Concentrating Solar Power
,”
Int. J. Heat Mass Transfer
,
135
, pp.
837
846
.10.1016/j.ijheatmasstransfer.2019.02.012
7.
Zhu
,
Q.
,
Tan
,
X.
,
Barari
,
B.
,
Caccia
,
M.
,
Strayer
,
A. R.
,
Pishahang
,
M.
,
Sandhage
,
K. H.
, and
Henry
,
A.
,
2021
, “
Design of a 2 MW ZrC/W-Based Molten-Salt-to-sCO2 PCHE for Concentrated Solar Power
,”
Appl. Energy
,
300
, p.
117313
.10.1016/j.apenergy.2021.117313
8.
Cai
,
W.-H.
,
Li
,
Y.
,
Li
,
Q.
,
Wang
,
Y.
, and
Chen
,
J.
,
2022
, “
Numerical Investigation on Thermal–Hydraulic Performance of Supercritical LNG in a Zigzag Mini-Channel of Printed Circuit Heat Exchanger
,”
Appl. Therm. Eng.
,
214
, p.
118760
.10.1016/j.applthermaleng.2022.118760
9.
Xiao
,
Q.
,
Zhao
,
X.
,
Zou
,
Z.
,
Yuan
,
Y.
,
Lv
,
W.
, and
Chen
,
K.
,
2023
, “
Numerical Investigation on Maldistribution of S-CO2 Flow Inside PCHE Under Rolling Conditions
,”
Energy Rep.
,
9
, pp.
78
92
.10.1016/j.egyr.2023.02.069
10.
Mahajan
,
H. P.
, and
Hassan
,
T.
,
2021
, “
A Unified Constitutive Model for Diffusion Bonded Alloy 800H to Perform Full Inelastic Analysis of Components in High Temperature Nuclear Service
,”
ASME
Paper No. PVP2021-62952. 10.1115/PVP2021-62952
11.
Shaw
,
A.
,
Mahajan
,
H. P.
, and
Hassan
,
T.
,
2020
, “
Assessment of Compact Heat Exchanger Design Following Elastic Perfectly Plastic Methodology
,”
ASME
Paper No. PVP2020-21500. 10.1115/PVP2020-21500
12.
Southall
,
D.
, and
Dewson
,
S. J.
,
2010
, “
Innovative Compact Heat Exchangers
,”
Proceedings of International Congress on Advances in Nuclear Power Plants 2010
(
ICAPP'10
),
San Diego, CA
, June 13–17, pp.
218
226
.https://www.heatric.com/app/uploads/2018/04/Innovative-compact-heat-exchangers.pdf
13.
Le Pierres
,
R.
,
Southall
,
D.
, and
Osborne
,
S.
,
2011
, “
Impact of Mechanical Design Issues on Printed Circuit Heat Exchangers
,”
Proceedings of sCO2 Power Cycle Symposium 2011
,
Boulder, CO
, May
24
25
.https://www.heatric.com/app/uploads/2018/04/Impact-of-mechanical-design-issues-on-PCHE.pdf
14.
Heatric
,
2023
, “Chemical Etching,” accessed July 23, 2010, http://www.heatric.com/heat-exchangers/features/chemical-etching
15.
Jiang
,
Y.
,
Liese
,
E.
,
Zitney
,
S. E.
, and
Bhattacharyya
,
D.
,
2018
, “
Design and Dynamic Modeling of Printed Circuit Heat Exchangers for Supercritical Carbon Dioxide Brayton Power Cycles
,”
Appl. Energy
,
231
, pp.
1019
1032
.10.1016/j.apenergy.2018.09.193
16.
Zhang
,
X.
,
Shi
,
S.
, and
Christensen
,
R. N.
,
2017
, “
Review on Mechanical Design of Printed Circuit Heat Exchangers
,”
ASME
Paper No. ICONE25-67284. 10.1115/ICONE25-67284
17.
Kim
,
Y. W.
,
Kang
,
J. H.
, and
Kim
,
E. S.
,
2018
, “
Mechanical Design for Key Dimensions of Printed Circuit Heat Exchanger
,”
Proceedings of the KNS 2018 Spring Meeting
, Jeju, Korea, May
17
18
.https://inis.iaea.org/search/search.aspx?orig_q=RN:50059184
18.
Wang
,
J.
,
Yan
,
X.
,
Lu
,
M.
,
Sun
,
Y.
, and
Wang
,
J.
,
2022
, “
Structural Assessment of Printed Circuit Heat Exchangers in Supercritical CO2 Waste Heat Recovery Systems for Ship Applications
,”
J. Therm. Sci.
,
31
(
3
), pp.
689
700
.10.1007/s11630-022-1493-0
19.
Xu
,
Z. R.
,
Chen
,
W. N.
,
Lian
,
J.
,
Yang
,
X. W.
,
Wang
,
Q. W.
,
Chen
,
Y.
, and
Ma
,
T.
,
2022
, “
Study on Mechanical Stress of Semicircular and Rectangular Channels in Printed Circuit Heat Exchangers
,”
Energy
,
238
, p.
121655
.10.1016/j.energy.2021.121655
20.
Kim
,
D.-H.
,
Yeo
,
S.
,
Kim
,
J.-H.
,
Sah
,
I.-J.
,
Hwang
,
J.-B.
,
Kim
,
S-J.
, and
Lee
,
Y.-K.
,
2023
, “
Creep Property and Correlation of Diffusion-Welded Alloy 800H Tubes for Printed Circuit Heat Exchangers and Steam Generators
,”
Met. Mater. Int.
,
29
(
10
), pp.
2838
2851
.10.1007/s12540-023-01429-3
21.
Park
,
C. G.
,
Koo
,
G. H.
, and
Lee
,
J. H.
,
2008
, “
Influence of a Cyclic Events Configuration on Elevated Temperature Structural Integrity
,”
Proceeding of the KNS Autumn Meeting
,
PyeongChang, Korea
, Oct.
30
31
.https://www.kns.org/files/pre_paper/11/70%EB%B0%95%EC%B0%BD%EA%B7%9C.pdf
22.
Shen
,
J.
,
Ma
,
Z. Y.
, and
Chen
,
H. F.
,
2022
, “
Shakedown and Ratcheting Analysis of Printed Circuit Heat Exchangers Under Multiple Cyclic Mechanical and Thermal Loads
,”
Int. J. Pressure Vessels Piping
,
199
, p.
104723
.10.1016/j.ijpvp.2022.104723
23.
Carlson
,
M. D.
,
2019
, “
PCHE Thermal Fatigue Lifetime Validation and Trade-Off Analysis for Various IHX Alloys
,”
Sandia National Laboratory
,
Albuquerque, NM
, Report No.
SAND2019-1678PE
.https://www.osti.gov/servlets/purl/1601121
24.
Kwon
,
J. S.
,
2019
, “
Experimental Printed Circuit Steam Generator Design for Dryout Induced Thermal Fatigue Study
,”
Proceedings of the Transactions of the Korean Nuclear Society Autumn Meeting
,
Goyang, Korea
, Oct.
24
25
.https://www.kns.org/files/pre_paper/42/19A-066-%EA%B6%8C%EC%A7%84%EC%88%98.pdf
25.
Lance
,
B.
,
Carlson
,
M. D.
, and
Amogne
,
D.
,
2020
, “
Diffusion Bonded Hydrogen Pre-Cooler Pressure Fatigue
,”
Sandia National Laboratory
,
Albuquerque, NM
, Report No.
SAND2020-3666C
.https://www.osti.gov/servlets/purl/1773600
26.
Mahajan
,
H. P.
, and
Hassan
,
T.
,
2019
, “
Finite Element Analysis of Printed Circuit Heat Exchanger Core for Creep and Creep-Fatigue Responses
,”
ASME
Paper No. PVP2019-93416. 10.1115/PVP2019-93416
27.
Jentz
,
I.
,
Suzanne
,
M.
, and
Robert
,
K.
,
2020
, “
Failure Mode Effects Analysis for Section Iii, Division 5 Class a, High Temperature Service of a Printed Circuit Heat Exchanger
,”
ASME
Paper No. PVP2020-21290. 10.1115/PVP2020-21290
28.
Mahajan
,
H. P.
,
McKllop
,
S.
,
Keating
,
R.
, and
Hassan
,
T.
,
2022
, “
Proposed Material Properties, Allowable Stresses, and Design Curves of Diffusion Bonded Alloy 800H for the ASME Code Section III Division 5
,”
ASME J. Pressure Vessel Technol.
,
144
(
6
), p.
061201
.10.1115/1.4054073
29.
Mahajan
,
H. P.
,
Maciel
,
L.
,
Ngaile
,
G.
, and
Hassan
,
T.
,
2022
, “
Mechanical Performance Evaluation of the Printed Circuit Heat Exchanger Core Experiments Under Tension and Pressure Loading
,”
ASME
Paper No. PVP2022-81247. 10.1115/PVP2022-81247
30.
Aljelawy
,
A. M.
,
Aldabbagh
,
A. M.
, and
Hatem
,
F. F.
,
2022
, “
Mechanical Integrity of Printed Circuit Heat Exchanger
,”
J. Eng.
,
28
(
8
), p.
17264073
.10.31026/j.eng.2022.08.05
31.
Griffith
,
A. A.
,
1920
, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London, Ser. A
,
221
, pp.
163
198
.https://www.jstor.org/stable/91192
32.
Francfort
,
G. A.
, and
Marigo
,
J. J.
,
1998
, “
Revisiting Brittle Fracture as an Energy Minimization Problem
,”
J. Mech. Phy. Solids
,
46
(
8
), pp.
1319
1342
.10.1016/S0022-5096(98)00034-9
33.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J. J.
,
2000
, “
Numerical Experiments in Revisited Brittle Fracture
,”
J. Mech. Phy. Solids
,
48
(
4
), pp.
797
826
.10.1016/S0022-5096(99)00028-9
34.
Miehe
,
C.
,
Hofacker
,
M.
, and
Welschinger
,
F. A.
,
2010
, “
Phase Field Model for Rate-Independent Crack Propagation: Robust Algorithmic Implementation Based on Operator Splits
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45–48
), pp.
2765
2778
.10.1016/j.cma.2010.04.011
35.
Hofacker
,
M.
, and
Miehe
,
C.
,
2012
, “
Continuum Phase Field Modeling of Dynamic Fracture: Variational Principles and Staggered FE Implementation
,”
Int. J. Fract.
,
178
(
1–2
), pp.
113
129
.10.1007/s10704-012-9753-8
36.
Fang
,
J. G.
,
Wu
,
C. Q.
,
Rabczuk
,
T.
,
Wu
,
C.
,
Ma
,
C. G.
,
Sun
,
G. Y.
, and
Li
,
Q.
,
2019
, “
Phase Field Fracture in Elasto-Plastic Solids: Abaqus Implementation and Case Studies
,”
Theor. Appl. Fract. Mech.
,
103
, p.
102252
.10.1016/j.tafmec.2019.102252
37.
Dunne
,
F.
,
2005
,
Introduction to Computational Plasticity
,
Oxford University Press
,
Oxford, UK
.
38.
AFCEN, RCC-M
,
2007
, Design and Construction Rules for Mechanical Components of PWR Nuclear Islands, Paris, France.
39.
ASME, Boiler and Pressure Vessel Committee
,
2017
, “
ASME Boiler and Pressure Vessel Code, Section III Appendices
,”
Rules for Construction of Nuclear Facility Components
,
ASME
,
New York
.
40.
ASME, Boiler and Pressure Vessel Committee
,
2017
, “
ASME Boiler and Pressure Vessel Code, Section ASME VIII Division 3
,”
Alternative Rules for Construction of High Pressure Vessels
,
ASME
,
New York
.
41.
Simanjuntak
,
A. P.
, and
Lee
,
J. Y.
,
2020
, “
Mechanical Integrity Analysis of a Printed Circuit Heat Exchanger With Channel Misalignment
,”
Appl. Sci.
,
10
(
6
), p.
2169
.10.3390/app10062169
You do not currently have access to this content.