Abstract

This work aims to investigate the complex fracture behavior of a large opening box girder (LOBG) using three-dimensional (3D) finite element method (FEM). A numerical model is developed to simulate the fracture of LOBG under individually or jointly applied torsion and bending loads. The crack damage is introduced into the side plate and bottom plate of LOBG. The influencing factors such as crack angles, crack locations, and load types are emphatically discussed. Additionally, the crack growth angles are also predicted during the analysis. The results present that the large opening can generate significant effects on the crack growth of the side plate crack (SPC) and the bottom plate crack (BPC). Under the condition of torsion or hogging, SPC grows more easily than BPC, while BPC is relatively prone to grow under sagging condition. Compared with the torsion condition, the initial crack angle can significantly reduce the stress intensity factor (SIF) under the bending condition. Furthermore, the cracks that gradually approach transverse frames are also more likely to induce mode I fracture under torsion conditions. These findings from the present study can reveal insights for a better understanding of fracture behavior for LOBG.

References

1.
Shi
,
G. J.
, and
Wang
,
D. Y.
,
2012
, “
Residual Ultimate Strength of Open Box Girders With Cracked Damage
,”
Ocean. Eng.
,
43
, pp.
90
101
.
2.
Hu
,
K.
,
Yang
,
P.
,
Xia
,
T.
, and
Peng
,
Z. Y.
,
2018
, “
Residual Ultimate Strength of Large Opening Box Girder With Crack Damage Under Torsion and Bending Loads
,”
Ocean. Eng.
,
162
, pp.
274
289
.
3.
Kwon
,
S. W.
, and
Sun
,
C. T.
,
2000
, “
Characteristics of Three-Dimensional Stress Fields in Plates With a Through-The-Thickness Crack
,”
Int. J. Fracture.
,
104
(
3
), pp.
289
314
.
4.
Barcelos
,
B. L.
, and
Palma
,
E. S.
,
2020
, “
Fatigue Analysis of a Bucket Wheel by Using Linear Elastic Fracture Mechanics
,”
Eng. Fail. Anal.
,
118
, p.
104824
.
5.
Rosakis
,
A. J.
, and
Ravi-Chander
,
K.
,
1986
, “
On Crack Tip Stress State: An Experimental Evaluation of Three- Dimensional Effects
,”
Int. J. Solids. Struct.
,
22
(
2
), pp.
121
134
.
6.
Kačianauskas
,
R.
,
Zenon
,
M.
,
Žarnovskij
,
V.
, and
Stupak
,
E.
,
2005
, “
Three-Dimensional Correction of the Stress Intensity Factor for Plate With a Notch
,”
Int. J. Fracture.
,
136
(
1–4
), pp.
75
98
.
7.
Moreira
,
P.
,
Pastrama
,
S. D.
, and
Castro
,
P.
,
2009
, “
Three-Dimensional Stress Intensity Factor Calibration for a Stiffened Cracked Plate
,”
Eng. Fract. Mech.
,
76
(
14
), pp.
2298
2308
.
8.
Xu
,
L.
,
Zhang
,
N.
,
Zhou
,
S.
,
Wang
,
L.
,
Ma
,
C.
, and
Liu
,
P.
,
2016
, “
Finite Element Analysis of Through Thickness Effects on 300 m Steel Stress Intensity Factor
,”
J. Mech. Strength.
,
38
(
1
), pp.
167
172
.
9.
Saboori
,
B.
, and
Ayatollahi
,
M. R.
,
2018
, “
A Novel Test Configuration Designed for Investigating Mixed Mode II/III Fracture
,”
Eng. Fract. Mech.
,
197
, pp.
248
258
.
10.
Demir
,
O.
,
Ayhan
,
A. O.
, and
İriç
,
S.
,
2017
, “
A New Specimen for Mixed Mode-I/II Fracture Tests: Modeling, Experiments and Criteria Development
,”
Eng. Fract. Mech.
,
178
, pp.
457
476
.
11.
Shahani
,
A. R.
, and
Habibi
,
S. E.
,
2007
, “
Stress Intensity Factors in a Hollow Cylinder Containing a Circumferential Semi-Elliptical Crack Subjected to Combined Loading
,”
Int. J. Fracture.
,
29
(
1
), pp.
128
140
.
12.
Fu
,
G. Y.
,
Yang
,
W.
, and
Li
,
C. Q.
,
2017
, “
Stress Intensity Factors for Mixed Mode Fracture Induced by Inclined Cracks in Pipes Under Axial Tension and Bending
,”
Theor. Appl. Fract. Mec.
,
89
, pp.
100
109
.
13.
Yu
,
P. S.
,
Wang
,
Q.
,
Zhang
,
C. F.
, and
Zhao
,
J. H.
,
2018
, “
Elastic T-Stress and I-II Mixed Mode Stress Intensity Factors for a Through-Wall Crack in an Inner-Pressured Pipe
,”
Int. J. Pres. Ves. Pip.
,
159
, pp.
67
72
.
14.
Chung
,
K. H.
, and
Yang
,
W. H.
,
2002
, “
Fracture Mechanics Analysis on the Bonded Repair of a Skin/Stiffener With an Inclined Central Crack
,”
Compos. Struct.
,
55
(
3
), pp.
269
276
.
15.
Hakan
,
Ş
, and
Ayhan
,
A. O.
,
2019
, “
Three-Dimensional Mixed Mode Stress Intensity Factors for Inclined Elliptical Surface Cracks in Plates Under Uniform Tensile Load
,”
Procedia Struct. Integr.
,
21
, pp.
38
45
.
16.
Zhang
,
Y.
,
Huang
,
X. P.
, and
Yan
,
X. S.
,
2015
, “
Stress Intensity Factors of Surface Cracks in Round Bars Under Combined Bending and Torsion Loadings
,”
Ship Sci. Technol.
,
37
(
11
), pp.
14
20
.
17.
Kumar
,
S. S.
,
Clement
,
H. A.
, and
Karthik
,
R.
,
2017
, “
Mixed Mode Fracture Analysis of Multiple Cracks in Flat and Curved Stiffened Panels of Aircraft Fuselage Structures
,”
Arch. Appl. Mech.
,
87
(
11
), pp.
1815
1828
.
18.
Ayatollahi
,
M. R.
,
Karami
,
J.
, and
Saboori
,
B.
,
2019
, “
Mixed Mode II/III Fracture Experiments on PMMA Using a New Test Configuration
,”
Eur. J. Mech. A-Solid.
,
77
, p.
103812
.
19.
Demir
,
O.
,
Ayhan
,
A. O.
, and
İriç
,
S.
,
2019
, “
A Novel Test System for Mixed Mode-I/II/III Fracture Tests—Part 2: Experiments and Criterion Development
,”
Eng. Fract. Mech.
,
220
, p.
106671
.
20.
Song
,
Y. Q.
,
Liu
,
X. Z.
,
Wang
,
Z.
, and
Wang
,
S. L.
,
2017
, “
Numerical Calculation of Stress Intensity Factor of Three-Dimensional Centrifugal Crack in 7085 Aluminum Alloy
,”
Sci. Technol. Eng.
,
17
(
28
), pp.
251
255
.
21.
Peng
,
Y.
, and
Yang
,
P.
,
2020
, “
Analysis of Dynamic Stress Intensity Factors for Cracked Stiffened Plates Based on Extended FE Method
,”
Int. J. Marit. Eng.
,
162
(
A1
), pp.
A35
A45
.
22.
Yu
,
H. J.
,
Wu
,
L. Z.
,
Guo
,
L. C.
,
Du
,
S. Y.
, and
He
,
Q. L.
,
2009
, “
Investigation of Mixed-Mode Stress Intensity Factors for Nonhomogeneous Materials Using an Interaction Integral Method
,”
Int. J. Solids. Struct.
,
46
(
20
), pp.
3710
3724
.
23.
Zhao
,
J.
, and
Guo
,
W.
,
2012
, “
Three-Parameter K–T–Tz Characterization of the Crack-Tip Fields in Compact-Tension-Shear Specimens
,”
Eng. Fract. Mech.
,
92
, pp.
72
88
.
24.
Zhao
,
J.
,
2009
, “
Three-Parameter Approach for Elastic–Plastic Stress Field of an Embedded Elliptical Crack
,”
Eng. Fract. Mech.
,
76
(
16
), pp.
2429
2444
.
25.
Ahangar
,
R. G.
, and
Verreman
,
Y.
,
2019
, “
Assessment of Mode I and Mode II Stress Intensity Factors Obtained by Displacement Extrapolation and Interaction Integral Methods
,”
J. Fail. Anal. Prev.
,
19
(
1
), pp.
85
97
.
26.
Bowness
,
D.
, and
Lee
,
M. M. K.
,
1995
, “
The Development of an Accurate Model for the Fatigue Assessment of Doubly Curved Cracks in Tubular Joints
,”
Int. J. Fracture.
,
73
(
2
), pp.
129
147
.
27.
Deng
,
S.
,
Hua
,
L.
,
Han
,
X. H.
,
Han
,
X. H.
,
Wei
,
W. T.
, and
Huang
,
S.
,
2015
, “
Analysis of Surface Crack Growth Under Rolling Contact Fatigue in a Linear Contact
,”
Tribol. T.
,
58
(
3
), pp.
432
443
.
28.
Ismail
,
A. E.
,
Ariffin
,
A. K.
,
Abdullah
,
S.
, and
Ghazali
,
M. J.
,
2012
, “
Stress Intensity Factors for Surface Cracks in Round Bar Under Single and Combined Loadings
,”
Meccanica.
,
47
(
5
), pp.
1141
1156
.
29.
He
,
W. T.
,
Liu
,
J. X.
, and
Xie
,
D.
,
2015
, “
Probabilistic Life Assessment on Fatigue Crack Growth in Mixed-Mode by Coupling of Kriging Model and Finite Element Analysis
,”
Eng. Fract. Mech.
,
139
, pp.
56
77
.
30.
Shi
,
G. J.
, and
Wang
,
D. Y.
,
2012
, “
Residual Ultimate Strength of Cracked Box Girders Under Torsional Loading
,”
Ocean. Eng.
,
43
, pp.
102
112
.
31.
Ao
,
L.
, and
Wang
,
D. Y.
,
2016
, “
Ultimate Torsional Strength of Cracked Stiffened Box Girders With a Large Deck Opening
,”
Int. J. Nav. Arch. Ocean.
,
8
(
4
), pp.
360
374
.
32.
Rege
,
K.
, and
Pavlou
,
D. G.
,
2019
, “
Stress Intensity Factors for Circumferential Through-Wall Cracks in Thin-Walled Cylindrical Shells Subjected to Tension and Torsion
,”
Fatigue. Fract. Eng. M.
,
42
(
5
), pp.
1062
1074
.
33.
Feng
,
G. Q.
,
Wang
,
Y. T.
,
Garbatov
,
Y.
,
Ren
,
H. L.
, and
Soares
,
C. G.
,
2021
, “
Experimental and Numerical Analysis of Crack Growth in Stiffened Panels
,”
Ships. Offshore. Struc.
,
16
(
9
), pp.
980
992
.
34.
Labeas
,
G.
,
Diamantakos
,
I.
, and
Kermanidis
,
T.
,
2009
, “
Assessing the Effect of Residual Stresses on the Fatigue Behavior of Integrally Stiffened Structures
,”
Theor. Appl. Fract. Mec.
,
51
(
2
), pp.
95
101
.
35.
Huang
,
X.
,
Liu
,
Y.
,
Huang
,
X.
, and
Dai
,
Y.
,
2017
, “
Crack Arrest Behavior of Central-Cracked Stiffened Plates Under Uniform Tension
,”
Int. J. Mech. Sci.
,
133
, pp.
704
719
.
36.
Barsoum
,
R. S.
,
2010
, “
On the Use of Isoparametric Finite Elements in Linear Fracture Mechanics
,”
Int. J. Numer. Meth. Eng.
,
10
(
1
), pp.
25
37
.
37.
Chen
,
J. J.
,
Huang
,
Y.
, and
Liu
,
G.
,
2010
, “
Analysis of Finite Element Model for Calculating Stress Intensity Factor Based on Crack-Tip Singular Element
,”
Shipbuild. China
,
51
(
3
), pp.
56
64
.
38.
Murakami
,
Y.
,
1986
,
Stress Intensity Factor Handbook
,
Pergamon Press
,
New York
.
39.
Seo
,
D. C.
, and
Lee
,
J. J.
,
2002
, “
Fatigue Crack Growth Behavior of Cracked Aluminum Plate Repaired With Composite Patch
,”
Compos. Struct.
,
57
(
1−4
), pp.
323
330
.
40.
Irfaee
,
M.
, and
Mahmoud
,
H.
,
2019
, “
Mixed-Mode Fatigue and Fracture Assessment of a Steel Twin Box-Girder Bridge
,”
J. Bridge. Eng.
,
24
(
7
), pp.
1
16
.
You do not currently have access to this content.