Abstract

In recent years, computational fluid dynamics (CFD) developments have shown a trend to combine Reynolds-averaged Navier–Stokes (RANS) CFD simulation with other methods such as wave theories or velocity potential-based numerical wave tanks, in order to reduce to computation costs. This is however not a new approach, and there exists a large amount of literature about domain decomposition techniques describing a two way coupling between the RANS CFD models and other methods. One can also observe an increasing popularity in the use of a less sophisticated technique where different fluid solvers are combined with one-way coupling. In these methods, a predefined solution is provided in the far-field, while a three-dimensional (3D) CFD simulation is applied in a limited zone near the structure. The predefined solution is used to specify the background far-field solution. The published solutions use wave theory or a numerical wave tank where the predefined solution is calculated parallel to the RANS solver. In this way, it is possible to reduce the interpolation inaccuracy and the amount of transferred data to the CFD simulation. The disadvantage of this technique is that the far field solver has to be prepared in order to run in parallel with the CFD solver. Due to the one way coupling, it is possible to predefine this information in tables before the CFD simulation. This technique makes it possible to define a general interface between difference solvers without modifying existing codes. This paper presents such a technique where the predefined solution is stored into files.

References

1.
Jacobsen
,
N. G.
,
Fuhrman
,
D. R.
, and
Fredsøe
,
Jørgen
,
2012
, “
A Wave Generation Toolbox for the Open-Source CFD Library: Openfoam
,”
Int. J. Numer. Methods Fluids
,
70
(
9
), pp.
1073
1088
. 10.1002/fld.2726
2.
Jacobsen
,
N.
,
8, 2017
,
waves2Foam Manual
.
3.
Duz
,
B.
,
Bunnik
,
T.
,
Kapsenberg
,
G.
, and
Vaz
,
G.
,
2016
, “
Numerical Simulation of Nonlinear Free Surface Water Waves – Coupling of a Potential Flow Solver to a Urans/vof Code
,”
ASME 2016 35th OMAE
,
Trondheim, Norway
, Paper No. OMAE2016-54808.
4.
Clauss
,
G. F.
,
Stempinski
,
F.
,
Stück
,
R.
, and
Schmittner
,
C. E.
,
2006
, “
Computational and Experimental Simulation of Nonbreaking and Breaking Waves for the Investigation of Structural Loads and Motions
,”
ASME 2006 25th OMAE
,
Hamburg, Germany
, Paper No. OMAE2006-92238.
5.
Fenton
,
J.
,
1985
, “
A Fifth-Order Stokes Theory for Steady Waves
,”
Waterway Port Coastal Ocean Eng.
,
111
(
2
), pp.
216
234
. 10.1061/(ASCE)0733-950X(1985)111:2(216)
6.
Pakozdi
,
C.
,
Östman
,
A.
,
Stansberg
,
C.
,
Peric
,
M.
,
Lu
,
H.
, and
Baarholm
,
R.
,
2015
, “
Estimation of Wave in Deck Load Using CFD Validated Against Model Test Data
,”
25th Annual International Ocean and Polar Engineering Conference
,
Kona, HI
, Paper No. 2015-TPC-1134.
7.
Kim
,
J.
,
O’Sullivan
,
J.
, and
Read
,
A.
,
2012
, “
Ringing Analysis of a Vertical Cylinder by Euler Overlay Method
,”
31st OMAE
,
Rio De Janeiro, Brazil
, Paper No. OMAE2012-84091.
8.
Bøckmann
,
A.
,
Pákozdi
,
C.
,
Kristiansen
,
T.
,
Jang
,
H.
, and
Kim
,
J.
,
2014
, “
An Experimental and Computational Development of a Benchmark Solution for the Validation of Numerical Wave Tanks
,”
ASME 2014 33rd OMAE
,
San Francisco, CA
.
9.
Baquet
,
A.
,
Kim
,
J.
, and
Huang
,
Z.
,
2017
, “
Numerical Modeling Using CFD and Potential Wave Theory for Three-Hour Nonlinear Irregular Wave Simulations
,”
ASME 2017 36th OMAE
,
Trondheim, Norway
, Paper No. OMAE2017-61090.
10.
Choi
,
Y.
,
Bouscasse
,
B.
,
Seng
,
S.
,
Ducrozet
,
G.
,
Gentaz
,
L.
, and
Ferrant
,
P.
,
2018
, “
Generation of Regular and Irregular Waves in Navier-Stokes CFD Solvers by Matching with the Nonlinear Potential Wave Solution At the Boundaries
,”
ASME 2018 37th OMAE
,
Madrid, Spain
, Paper No. OMAE2018-78077.
11.
Kamath
,
A.
,
Alagan Chella
,
M.
,
Bihs
,
H.
, and
Arntsen
,
Ø. A.
,
2015
, “
Evaluating Wave Forces on Groups of Three and Nine Cylinders Using a 3d Numerical Wave Tank
,”
Eng. Appl. Comput. Fluid Mech.
,
9
(
1
), pp.
343
354
.
12.
Alagan Chella
,
M.
,
Bihs
,
H.
,
Myrhaug
,
D.
, and
Muskulus
,
M.
,
2015
, “
Breaking Characteristics and Geometric Properties of Spilling Breakers Over Slopes
,”
Coastal Eng.
,
95
, pp.
4
19
. 10.1016/j.coastaleng.2014.09.003
13.
Aggarwal
,
A.
,
Pakozdi
,
C.
,
Bihs
,
H.
,
Myrhaug
,
D.
, and
Alagan Chella
,
M.
,
2018
, “
Free Surface Reconstruction for Phase Accurate Irregular Wave Generation
,”
J. Marine Sci. Eng.
,
6
(
3
), p.
105
. 10.3390/jmse6030105
14.
Aggarwal
,
A.
,
Alagan Chella
,
M.
,
Bihs
,
H.
,
Pakzodi
,
C.
,
Berthelsen
,
P. A.
, and
Arntsen
,
Ø. A.
,
2017
, “
Numerical Investigation of Irregular Breaking Waves for Extreme Wave Spectra Using CFD
,”
27th Annual International Ocean and Polar Engineering Conference
,
San Francisco, CA
, Paper No. ISOPE-I-17-460.
15.
Miquel
,
A. M.
,
Kamath
,
A.
,
Alagan Chella
,
M.
,
Archetti
,
R.
, and
Bihs
,
H.
,
2018
, “
Analysis of Different Methods for Wave Generation and Absorption in a CFD-based Numerical Wave Tank
,”
J. Marine Sci. Eng.
,
6
(
2
), p.
73
. 10.3390/jmse6020073
16.
Simcenter
.
Star-CCM+ 13.04 User Manual
. Simens PLM Software.
17.
Pakozdi
,
C.
,
Spence
,
S.
,
Fouques
,
S.
,
Thys
,
M.
,
Alsos
,
H. S.
,
Bachynski
,
E. E.
,
Bihs
,
H.
, and
Kamath
,
A.
,
2018
, “
Nonlinear Wave Load Models for Extra Large Monopiles
,”
Proceedings of ASME 2018 1st International Offshore Wind Technical Conference
,
San Francisco, CA
, Paper No. IOWTC2018-1083.
18.
Kim
,
J.
,
Jang
,
H.
,
Izarra
,
R.
,
Martin
,
D.
, and
Dalane
,
O.
,
2014
, “
CFD-FE Simulation of Wave Slamming on An Offshore Platform in Extreme Sea States
,”
OTC 2014
,
Houston, TX
.
19.
Press
,
W.
,
Teukolsky
,
S.
,
Vetterling
,
W.
, and
Flannery
,
B
,
2007
,
Numerical Recipes: The Art of Scientific Computing
, 3rd ed.,
Cambridge University Press
.
20.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
,
Aggarwal
,
A.
, and
Arntsen
,
Ø. A.
,
2016
, “
A New Level Set Numerical Wave Tank with Improved Density Interpolation for Complex Wave Hydrodynamics
,”
Comput. Fluids
,
140
, pp.
191
208
. 10.1016/j.compfluid.2016.09.012
21.
Peric
,
M.
,
Feb, 2017
, “
Prediction of Wave Propagation and Wave-structure Interaction
,”
Siemens AG
,
Power Point Presentation
.
22.
Muzaferija
,
S.
, and
Peric
,
M.
,
1999
,
Computation of Free Surface Flows Using Interface-Tracking and Interface Capturing Methods
,
WIT Press
,
Southampton, UK
, pp.
59
100
.
23.
Ostman
,
A.
, and
Silva
,
D. F. C.
,
2014
, “
A Fully Nonlinear RANS-VOF Numerical Wavetank Applied in the Analysis of Green Water on FPSO in Waves
,”
Proceedings of the 33rd International Conference on Ocean, Offshore and Artic Engineering
,
San Francisco, CA
, Paper No. OMAE2014-23927.
24.
Sobey
,
R.
,
1997
, Linear and nonlinear wave theory. Short advanced course, Leichtweiß-Institut für Wasserbau, Braunschweig.
25.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
, and
Arntsen
,
Ø. A.
,
2017
, “
Extreme Wave Generation, Breaking and Impact Simulations with REEF3D
,”
ASME 2017 36th OMAE
,
Trondheim, Norway
, Paper No. OMAE2017-61524.
26.
Henning
,
J.
,
2005
,
Generation and Analysis of Harsh Wave Environments
, Vol.
PhD
,
TU Berlin
,
Berlin, Germany
.
You do not currently have access to this content.