Abstract

Aiming to ensure the structural integrity of an offshore structure, wave-induced responses have been measured during normal operating conditions. Operational modal analysis is applied to the data obtained from continuously monitoring the structure. Sensors placed only on the topside of an offshore platform are sufficient to provide information to identify the modal properties of the structure, such as natural frequencies, damping ratios, and mode shapes. A finite element model is created and updated in line with the identified dynamic properties for applying a modal expansion technique in the interest of accessing information at any point of the structure. Wave radars are also placed at the platform from which the wave forces are calculated based on basic industrial standard models. In this way, the wave kinematics are estimated according to the linear wave theory associated with Wheeler stretching. Since this study is related to offshore structures composed by slender elements, the wave forces are estimated using Morison formulation. By assigning typical values to the drag and inertia coefficients, wave loads are estimated and applied to the updated finite element model. For the diffraction effect, the wave load has also been evaluated according to MacCamy and Fuchs theory. The responses obtained from this procedure are compared with measured responses. In addition to describing the process, this article presents a case study to verify the theory using monitoring data from a tripod jacket. Results indicate realistic response estimation that contributes to the knowledge about the state of the structure.

References

1.
Almarnaess
,
A.
,
1985
,
Fatigue Handbook: Offshore Steel Structures
,
Tapir Publishers
,
Flatasen, Norway
.
2.
Carne
,
T. G.
, and
James
,
G. H.
,
2010
, “
The Inception of OMA in the Development of Modal Testing Technology for Wind Turbines
,”
Mech. Syst. Signal Process
,
24
(
5
), pp.
1213
1226
. 10.1016/j.ymssp.2010.03.006
3.
Brincker
,
R.
,
Andersen
,
P.
,
Martinez
,
M. E.
, and
Tallavó
,
F.
,
1996
, “
Modal Analysis of an Offshore Platform Using Two Different ARMA Approaches
,”
Proceedings of the 14th International Modal Analysis Conference
,
Michigan, USA
,
Feb. 12–15
.
4.
Skafte
,
A.
,
Tygesen
,
U. T.
, and
Brincker
,
R.
,
2014
, “
Expansion of Mode Shapes and Responses on the Offshore Platform Valdemar
,”
Conference Proceedings of the Society for Experimental Mechanics Series
,
Orlando, FL
,
Feb. 3–6
.
5.
Allemang
,
R. J.
,
2003
, “
The Modal Assurance Criterion—Twenty Years of Use and Abuse
,”
Sound Vibr.
,
37
(
8
), pp.
14
23
.
6.
Bianconi
,
F.
,
Salachoris
,
G. P.
,
Clementi
,
F.
, and
Lenci
,
S.
,
2020
, “
A Genetic Algorithm Procedure for the Automatic Updating of Fem Based on Ambient Vibration Tests
,”
Sensors (Switzerland)
,
20
(
3315
), pp.
1
17
. 10.3390/s20113315
7.
Standoli
,
G.
,
Giordano
,
E.
,
Milani
,
G.
, and
Clementi
,
F.
,
2020
, “
Model Updating of Historical Belfries Based on Oma Identification Techniques
,”
Int. J. Archit. Heritage
, pp.
1
25
. 10.1080/15583058.2020.1723735
8.
Craik
,
A. D.
,
2004
, “
The Origins of Water Theory
,”
Ann. Rev. Fluid Mech
,
36
(
1
), pp.
1
28
. 10.1146/annurev.fluid.36.050802.122118
9.
Wheeler
,
J. D.
,
1969
, “
Method for calculating forces produced by irregular waves
,”
In Proceedings of the Annual Offshore Technology Conference
,
Houston, TX
,
May 18–21
.
10.
Morison
,
J.
,
Johnson
,
J.
, and
Schaaf
,
S.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
J. Pet. Technol
,
2
(
5
). 10.2118/950149-G
11.
Sarpkaya
,
T. S.
,
2010
,
Wave Forces on Offshore Structures
,
Cambridge University Press
,
UK
.
12.
Keulegan
,
G.
, and
Carpenter
,
L.
,
1958
, “
Forces on Cylinders and Plates in an Oscillating Fluid
,”
J. Res. Nat. Bureau Stand.
,
60
(
5
), pp.
423
440
. 10.6028/jres.060.043
13.
Heideman
,
J. C.
,
Olsen
,
O. A.
, and
Johansson
,
P. I.
,
1979
,
Local Wave Force Coefficients
, Vol.
IV
,
ASCE
,
Virginia, USA
, pp.
684
699
.
14.
Dütsch
,
H.
,
Durst
,
F.
,
Becker
,
S.
, and
Lienhart
,
H.
,
1998
, “
Low-Reynolds-Number Flow Around an Oscillating Circular Cylinder at Low Keulegan-Carpenter Numbers
,”
J. Fluid. Mech.
,
360
, pp.
249
271
. 10.1017/S002211209800860X
15.
Boccotti
,
P.
,
Arena
,
F.
,
Fiamma
,
V.
, and
Barbaro
,
G.
,
2012
, “
Field Experiment on Random Wave Forces Acting on Vertical Cylinders
,”
Probab. Engin. Mech
,
28
(Computational Stochastic Mechanics - CSM6), pp.
39
51
. 10.1016/j.probengmech.2011.08.003
16.
Nabuco
,
B.
,
Brüske
,
H.
,
Faber
,
M. H.
, and
Brincker
,
R.
,
2019
, “
A First Step in Quantifying the Value of OMA Based Fatigue Stress Monitoring
,”
In 8th International Operational Modal Analysis Conference
,
Copenhagen, Denmark
,
May 13-15
.
17.
Brincker
,
R.
, and
Ventura
,
C. E
,
2015
,
Introduction to Operational Modal Analysis
,
John Wiley & Sons, Ltd.
,
Hoboken, NJ
.
18.
Friswell
,
M. I.
, and
Mottershead
,
J. E.
,
1995
,
Finite Element Model Updating in Structural Dynamics
(
Solid Mechanics and Its Applications
, Vol.
38
),
Springer Netherlands
,
Dordrecht
.
19.
Brincker
,
R.
,
Skafte
,
A.
,
López-Aenlle
,
M.
,
Sestieri
,
A.
,
D’Ambrogio
,
W.
, and
Canteli
,
A.
,
2014
, “
A Local Correspondence Principle for Mode Shapes in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
45
(
1
), pp.
91
104
. 10.1016/j.ymssp.2013.10.025
20.
Orcina Ltd.
,
2007
,
OrcaFlex Manual
, 9.1a,
Orcina Ltd.
,
Daltongate, UK
, pp.
1
402
.
21.
Journée
,
J.
,
Massie
,
W.
, and
Huijsmans
,
R.
,
2000
,
Offshore Hydromechanics
,
TU Delft
,
Delft, The Netherlands
.
22.
Chakrabarti
,
S
,
1987
,
Hydrodynamics of Offshore Structures
,
WIT Press
,
Southampton, UK
.
23.
Isaacson
,
M.
,
1979
,
Wave-Induced Forces in the Diffraction Regime
,
Pitman Advanced Publishing Program
,
London, UK
, pp.
68
89
.
24.
Longoria
,
R. G.
,
Beaman
,
J. J.
, and
Miksad
,
R. W.
,
1991
, “
An Experimental Inwestigation of Forces Induced on Cylinders by Random Oscillatory Flow
,”
ASME J. Offshore. Mech. Arct. Eng.
,
113
(
4
), pp.
275
285
. 10.1115/1.2919931
25.
Longoria
,
R. G.
,
Beaman
,
J. J.
, and
Miksad
,
R. W.
,
1991
, “
Drag, Inertia and Transverse Force Coefficients For Random Planar Oscillatory Flow
,”
Int. J. Offshore Polar Engin
,
1
(
3
), pp.
242
245
. https://www.onepetro.org/journal-paper/ISOPE-91-01-3-242
26.
MacCamy
,
R. C.
, and
Fuchs
,
R. A.
,
1954
, “
Wave Forces on Piles: A Diffraction Theory
”,
U.S. Army coastal engineering Research Center (formerly Beach Erosion Board), Technical Memorandum No. 69
.
27.
Ramboll
,
2017
,
ESIA Maersk Oil DBU: Environmental and Social Impact Statement – the TYRA Project
, Report No. 1100022384,
Ramboll
,
Copenhagen, Denmark
. https://docplayer.net/76891175-Intended-for-maersk-oil-document-type-report-date-june-2017-esia-maersk-oil-dbu-environmental-and-social-impact-statement-esis-tyra.html
28.
Vold
,
H.
,
Kundrat
,
J.
,
Rocklin
,
G. T.
, and
Russell
,
R.
,
1982
, “
A Multi-Input Modal Estimation Algorithm for Mini-Computers
,”
SAE International Congress and Exposition
,
Detroit, MI
,
Feb. 22–26
.
29.
ANSYS Inc.
,
2011
,
ANSYS Mechanical APDL
,
ANSYS Inc
.
30.
Amador
,
S.
,
Juul
,
M.
,
Friis
,
T.
, and
Brincker
,
R.
,
2019
, “
Finite Element Model Updating Using the Local Correspondence Principle
,”
36th IMAC, A Conference and Exposition on Structural Dynamics
,
Orlando, FL
.
31.
DNV GL
,
2017
,
Environmental Conditions and Environmental Loads
,
DNV GL AS
,
Høvik, Norway
,
Technical report DNVGL-RP-C205
.
32.
Kristiansen
,
T.
, and
Faltinsen
,
O. M.
,
2017
, “
Higher Harmonic Wave Loads on a Vertical Cylinder in Finite Water Depth
,”
J. Fluid. Mech.
,
833
, pp.
773
805
. 10.1017/jfm.2017.702
33.
Vested
,
M. H.
,
Carstensen
,
S.
, and
Christensen
,
E. D.
,
2020
, “
Experimental Study of Wave Kinematics and Wave Load Distribution on a Vertical Circular Cylinder
,”
Coastal Engin
.,
157
. 10.1016/j.coastaleng.2020.103660
34.
Christensen
,
E. D.
,
Bredmose
,
H.
, and
Hansen
,
E. A.
,
2005
, “
Extreme Wave Forces and Wave Run-Up on Offshore Wind-Turbine Foundations
,”
Proceedings of Copenhagen Offshore Wind Conference
,
Copenhagen, Denmark
,
Oct. 26–28
.
You do not currently have access to this content.