Abstract

Hovering control of autonomous underwater vehicles (AUVs) via a variable ballast system (VBS) is challenging owing to the difficulty in precisely estimating related hydrodynamic coefficients and vertical disturbance. In this work, a hierarchical control strategy is proposed which comprises an upper layer—the proportional-integral-derivative (PID) type ballast water mass planner generating the desired ballast mass, and a lower layer—the continuous mass flowrate controller adjusting the actual ballast mass. The resulting flowrate algorithm endows the system with local uniform asymptotic stability and robustness to both modeling errors and vertical disturbance. Numerical results verify the feasibility and effectiveness of the proposed hierarchical hovering control strategy.

References

1.
Fletcher
,
B.
,
Bowen
,
A.
,
Yoerger
,
D. R.
, and
Whitcomb
,
L. L.
,
2009
, “
Journey to the Challenger Deep: 50 Years Later With the Nereus Hybrid Remotely Operated Vehicle
,”
Mar. Technol. Soc. J.
,
43
(
5
), pp.
65
76
. 10.4031/MTSJ.43.5.26
2.
Galceran
,
E.
,
Campos
,
R.
,
Palomeras
,
N.
,
Ribas
,
D.
,
Carreras
,
M.
, and
Ridao
,
P.
,
2015
, “
Coverage Path Planning With Real-Time Replanning and Surface Reconstruction for Inspection of Three-Dimensional Underwater Structures Using Autonomous Underwater Vehicles
,”
J. Field Robot.
,
32
(
7
), pp.
952
983
. 10.1002/rob.21554
3.
Gao
,
X.
,
Ding
,
K.
,
Ren
,
Y. G.
,
Fu
,
W. T.
,
Ding
,
Z. J.
,
Zhao
,
S. Y.
, and
Liu
,
B. H.
,
2017
, “
Target Deployment and Retrieval Using JIAOLONG Manned Submersible in the Depth of 6600m in Mariana Trench
,”
China Ocean Eng.
,
31
(
5
), pp.
618
623
. 10.1007/s13344-017-0071-9
4.
Khojasteh
,
D.
, and
Kamali
,
R.
,
2017
, “
Design and Dynamic Study of a ROV With Application to Oil and Gas Industries of Persian Gulf
,”
Ocean Eng.
,
136
, pp.
18
30
. 10.1016/j.oceaneng.2017.03.014
5.
Maurya
,
P. K.
,
De Sa
,
E.
,
Dubey
,
A. C.
,
Dabholkar
,
N.
, and
Pascoal
,
A.
,
2016
, “
Autonomous Hovering Profiler
,”
2016 IEEE/OES Autonomous Underwater Vehicles (AUV)
,
Tokyo, Japan
,
Nov. 6–9
, pp.
268
272
.
6.
Zhao
,
X.
,
Liu
,
Y.
,
Han
,
M.
,
Wu
,
D.
, and
Li
,
D.
,
2016
, “
Improving the Performance of an AUV Hovering System by Introducing Low-Cost Flow Rate Control Into Water Hydraulic Variable Ballast System
,”
Ocean Eng.
,
125
, pp.
155
169
. 10.1016/j.oceaneng.2016.08.001
7.
Gupta
,
S.
,
Hare
,
J.
, and
Zhou
,
S.
,
2012
, “
Cooperative Coverage Using Autonomous Underwater Vehicles in Unknown Environments
,”
2012 MTS/IEEE Oceans Conference
,
Hampton Roads, VA
,
Oct. 14–19
, pp.
1
5
.
8.
Pyo
,
J.
,
Cho
,
H.
,
Joe
,
H.
,
Ura
,
T.
, and
Yu
,
S. C.
,
2015
, “
Development of Hovering Type AUV ‘Cyclops’ and Its Performance Evaluation Using Image Mosaicking
,”
Ocean Eng.
,
109
, pp.
517
530
. 10.1016/j.oceaneng.2015.09.023
9.
Maki
,
T.
,
Ura
,
T.
, and
Sakamaki
,
T.
,
2012
, “
AUV Navigation Around Jacket Structures II: Map Based Path-Planning and Guidance
,”
J. Mar. Sci. Technol.
,
17
(
4
), pp.
523
531
. 10.1007/s00773-012-0183-0
10.
Ridao
,
P.
,
Carreras
,
M.
,
Ribas
,
D.
,
Sanz
,
P. J.
, and
Oliver
,
G.
,
2015
, “
Intervention AUVs: The Next Challenge
,”
Annu. Rev. Control.
,
40
, pp.
227
241
. 10.1016/j.arcontrol.2015.09.015
11.
Caccia
,
M.
, and
Veruggio
,
G.
,
2000
, “
Guidance and Control of a Reconfigurable Unmanned Underwater Vehicle
,”
Control Eng. Practice
,
8
(
1
), pp.
21
37
. 10.1016/S0967-0661(99)00125-2
12.
Kobayashi
,
R.
, and
Okada
,
S.
,
2016
, “
Development of Hovering Control System for an Underwater Vehicle to Perform Core Internal Inspections
,”
J. Nucl. Sci. Technol.
,
53
(
4
), pp.
566
573
. 10.1080/00223131.2015.1064331
13.
McFarland
,
D.
,
Gilhespy
,
I.
, and
Honary
,
E.
,
2003
, “
DIVEBOT: A Diving Robot With a Whale-Like Buoyancy Mechanism
,”
Robotica
,
21
(
4
), pp.
385
398
. 10.1017/S026357470300496X
14.
Medvedev
,
A. V.
,
Kostenko
,
V. V.
, and
Tolstonogov
,
A. Y.
,
2017
, “
Depth Control Methods of Variable Buoyancy AUV
,”
2017 IEEE/OES International Symposium on Under-Water Technology (UT)
,
Busan, South Korea
,
Feb. 21–24
, pp.
1
5
.
15.
Vasilescu
,
I.
,
Detweiler
,
C.
,
Doniec
,
M.
,
Gurdan
,
D.
,
Sosnowski
,
S.
,
Stumpf
,
J.
, and
Rus
,
D.
,
2010
, “
Amour V: A Hovering Energy Efficient Underwater Robot Capable of Dynamic Payloads
,”
Int. J. Robot. Res.
,
29
(
5
), pp.
547
570
. 10.1177/0278364909358275
16.
Font
,
R.
, and
García-Peláez
,
J.
,
2013
, “
On a Submarine Hovering System Based on Blowing and Venting of Ballast Tanks
,”
Ocean Eng.
,
72
, pp.
441
447
. 10.1016/j.oceaneng.2013.07.021
17.
Tangirala
,
S.
, and
Dzielski
,
J.
,
2007
, “
A Variable Buoyancy Control System for a Large AUV
,”
IEEE J. Ocean. Eng.
,
32
(
4
), pp.
762
771
. 10.1109/JOE.2007.911596
18.
Woods
,
S. A.
,
Bauer
,
R. J.
, and
Seto
,
M. L.
,
2012
, “
Automated Ballast Tank Control System for Autonomous Underwater Vehicles
,”
IEEE J. Ocean. Eng.
,
37
(
4
), pp.
727
739
. 10.1109/JOE.2012.2205313
19.
Liu
,
Y.
,
Zhao
,
X.
,
Wu
,
D.
,
Li
,
D.
, and
Li
,
X.
,
2015
, “
Study on the Control Methods of a Water Hydraulic Variable Ballast System for Submersible Vehicles
,”
Ocean Eng.
,
108
, pp.
648
661
. 10.1016/j.oceaneng.2015.08.045
20.
Fossen
,
T. I.
,
2011
,
Handbook of Marine Craft Hydrodynamics and Motion Control
, 1st ed.,
John Wiley & Sons, Ltd.
,
Chichester, UK
.
21.
Liceaga-Castro
,
E.
, and
Van Der Molen
,
G.
,
1995
, “
A Submarine Depth Control System Design
,”
Int. J. Control
,
61
(
2
), pp.
279
308
. 10.1080/00207179508921904
22.
Lapierre
,
L.
,
Fraisse
,
P.
, and
Dauchez
,
P.
,
2003
, “
Position/Force Control of an Underwater Mobile Manipulator
,”
J. Robot. Syst.
,
20
(
12
), pp.
707
722
. 10.1002/rob.10119
23.
Furlong
,
M. E.
,
Paxton
,
D.
,
Stevenson
,
P.
,
Pebody
,
M.
,
Mcphail
,
S. D.
, and
Perrett
,
J.
,
2012
, “
Autosub Long Range: A Long-Range Deep Diving AUV for Ocean Monitoring
,”
2012 IEEE/OES Autonomous Underwater Vehicles (AUV)
,
Southampton, UK
,
Sept. 24–27
, pp.
1
7
.
24.
Steenson
,
L. V.
,
Turnock
,
S. R.
,
Phillips
,
A. B.
,
Harris
,
C.
,
Furlong
,
M. E.
,
Rogers
,
E.
,
Wang
,
L.
,
Bodles
,
K.
, and
Evans
,
D. W.
,
2014
, “
Model Predictive Control of a Hybrid Autonomous Underwater Vehicle With Experimental Verification
,”
Proc. Inst. Mech. Eng. Part M J. Eng.
,
228
(
2
), pp.
166
179
. 10.1177/1475090213506185
25.
Fossen
,
T. I.
, and
Foss
,
B. A.
,
1991
, “
Sliding Control of MIMO Nonlinear Systems
,”
Model. Identif. Control
,
12
(
3
), pp.
129
138
. 10.4173/mic.1991.3.3
26.
Wang
,
L.
,
2009
,
Model Predictive Control System Design and Implementation Using MATLAB®
,
Springer-Verlag
,
London, UK
.
27.
Jin
,
S.
,
Kim
,
J.
,
Kim
,
J.
, and
Seo
,
T.
,
2015
, “
Six-Degree-of-Freedom Hovering Control of an Underwater Robotic Platform with Four Tilting Thrusters via Selective Switching Control
,”
IEEE-ASME Trans. Mechatron.
,
20
(
5
), pp.
2370
2378
. 10.1109/TMECH.2014.2378286
28.
Tanakitkorn
,
K.
,
Wilson
,
P. A.
,
Turnock
,
S. R.
, and
Phillips
,
A. B.
,
2017
, “
Depth Control for an Over-Actuated, Hover-Capable Autonomous Underwater Vehicle With Experimental Verification
,”
Mechatronics
,
41
, pp.
67
81
. 10.1016/j.mechatronics.2016.11.006
29.
Bi
,
A. Y.
, and
Feng
,
Z. P.
,
2019
, “
Composite Hovering Control of Underwater Vehicles via Variable Ballast Systems
,”
J. Mar. Sci. Technol.
,
2019
(
5
), pp.
1
8
. 10.1007/s00773-019-00670-z
30.
Perruquetti
,
W.
,
Floquet
,
T.
, and
Moulay
,
E.
,
2008
, “
Finite-Time Observers: Application to Secure Communication
,”
IEEE Trans. Autom. Control
,
53
(
1
), pp.
356
360
. 10.1109/TAC.2007.914264
31.
Arimoto
,
S.
, and
Miyazaki
,
F.
,
1984
, “
Stability and Robustness of PID Feedback Control for Robot Manipulators of Sensory Capability
,”
Proceedings of the 1st International Symposium on Robotics Research
,
M.
Brady
and
R.
Paul
, eds.,
Bretton Woods, NH
,
Aug. 1983
, MIT Press, pp.
783
799
.
You do not currently have access to this content.