Floating offshore wind platforms may be subjected to severe sea states, which include both steep and long waves. The hydrodynamic models used in the offshore industry are typically based on potential-flow theory and/or Morison’s equation. These methods are computationally efficient and can be applied in global dynamic analysis considering wind loads and mooring system dynamics. However, they may not capture important nonlinearities in extreme situations. The present work compares a fully nonlinear numerical wave tank (NWT), based on the viscous Navier–Stokes equations, and a second-order potential-flow model for such situations. A comparison of the NWT performance with the experimental data is first completed for a moored vertical floating cylinder. The OC5-semisubmersible floating platform is then modeled numerically both in this nonlinear NWT and using a second-order potential-flow based solver. To test both models, they are subjected to nonsteep waves and the response in heave and pitch is compared with the experimental data. More extreme conditions are examined with both models. Their comparison shows that if the structure is excited at its heave natural frequency, the dependence of the response in heave on the wave height and the viscous effects cannot be captured by the adjusted potential-flow based model. However, closer to the inertia dominated region, the two models yield similar responses in pitch and heave.

References

1.
Jonkman
,
J.
,
2010
, “
Definition of the Floating System for Phase IV of OC3
,” Tech. rep. (Report No. NREL/TP-500-47535), National Renewable Energy Laboratory (NREL), Golden, CO.
2.
Robertson
,
A.
,
Jonkman
,
J.
,
Masciola
,
M.
,
Song
,
H.
,
Goupee
,
A.
,
Coulling
,
A.
, and
Luan
,
C.
,
2014
, “
Definition of the Semisubmersible Floating System for Phase II of OC4
,” Tech. rep. (Report No. NREL/TP-5000-60601), National Renewable Energy Laboratory (NREL), Golden, CO.
3.
Robertson
,
A.
,
Wendt
,
F.
,
Jonkman
,
J.
,
Popko
,
W.
,
Dagher
,
H.
,
Sebastien Gueydon
,
S.
,
Qvist
,
J.
,
Vittori
,
F.
,
Azcona
,
J.
,
Uzunoglu
,
E.
,
Guedes Soares
,
C.
,
Harries
,
R.
,
Yde
,
A.
,
Galinos
,
C.
,
Hermans
,
K.
,
Bernardus de Vaal
,
J.
,
Bozonnet
,
P.
,
Bouy
,
L.
,
Bayati
,
I.
,
Bergua
,
R.
,
Galvan
,
J.
,
Mendikoa
,
I.
,
Barrera Sanchez
,
C.
,
Shin
,
H.
,
Oh
,
S.
,
Molins
,
C.
, and
Debruyne
,
Y.
,
2017
, “
OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine
,”
Energy Procedia
,
137
, pp.
38
57
.
4.
Koo
,
B.
,
Goupee
,
A.
,
Kimball
,
R.
, and
Lambrakos
,
K.
,
2014
, “
Model Tests for a Floating Wind Turbine on Three Different Floaters
,”
ASME J. Offshore Mech. Arctic Eng.
,
136
(
2
), p.
020907
.
5.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” Tech. rep. (Report No. NREL/TP-500-38060), National Renewable Energy Laboratory (NREL), Golden, CO.
6.
Bachynski
,
E.
, and
Moan
,
T.
,
2014
, “
Ringing Loads on Tension Leg Platform Wind Turbines
,”
Ocean Eng.,
84
(
1
), pp.
237
248
.
7.
Faltinsen
,
O.
,
Newman
,
J.
, and
Vinje
,
T.
,
1995
, “
Nonlinear Wave Loads on a Slender Vertical Cylinder
,”
J. Fluid. Mech.,
78
(
1
), pp.
179
198
.
8.
Chan
,
G.
,
Sclavounos
,
P.
,
Jonkman
,
J.
, and
Hayman
,
G.
,
2015
, “
Computation of Nonlinear Hydrodynamic Loads on Floating Wind Turbines Using Fluid-Impulse Theory
,”
Proceedings of the ASME 34th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2015)
,
St. John's, Canada
.
9.
Viré
,
A.
,
Xiang
,
J.
,
Piggott
,
M.
,
Cotter
,
C.
, and
Pain
,
C.
,
2013
, “
Towards the Fully-Coupled Numerical Modelling of Floating Wind Turbines
,”
Energy Procedia
,
35
(
1
), pp.
43
51
.
10.
Benitz
,
M.
,
Schmidt
,
D.
,
Lackner
,
M.
,
Stewart
,
G.
,
Jonkman
,
J.
, and
Robertson
,
A.
,
2014
, “
Comparison of Hydrodynamic Load Predictions Between Reduced Order Engineering Models and Computational Fluid Dynamics for the OC4-DeepCWind Semisubmersible
,”
Proceedings of the ASME 33rd International Conference on Ocean, Offshore and Arctic Engineering (OMAE2014)
,
San Francisco, CA
.
11.
Benitz
,
M.
,
Schmidt
,
D.
,
Lackner
,
M.
,
Stewart
,
G.
,
Jonkman
,
J.
, and
Robertson
,
A.
,
2015
, “
Validation of Hydrodynamic Load Models Using CFD for the OC4-DeepCWind Semisubmersible
,”
Proceedings of the ASME 34th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2015)
,
St. John's, Canada
.
12.
Weller
,
H.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object Oriented Techniques
,”
Offshore Mech. Arctic Eng.
,
12
(
6
), pp.
620
631
.
13.
Jacobsen
,
N. G.
,
Fuhrman
,
D. R.
, and
Fredsøe
,
J.
,
2012
, “
A Wave Generation Toolbox for the Open-Source CFD Library: OpenFoam®
,”
Int. J. Numer. Methods Fluids
,
70
(
9
), pp.
1073
1088
.
14.
Hirt
,
C.
, and
Nichols
,
B.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
39
(
1
), pp.
201
225
.
15.
Rusche
,
H.
,
2002
, “
A Numerical Method for Two-Dimensional Studies of Large Amplitude Motions of Floating Bodies in Steep Waves
,” Ph.D. thesis,
Imperial College of Science, Technology & Medicine
,
London, UK
.
16.
Berberović
,
E.
,
Hinsberg
,
N. V.
,
Jakirlić
,
S.
,
Roisman
,
I.
, and
Tropea
,
C.
,
2009
, “
Drop Impact Onto a Liquid Layer of Finite Thickness: Dynamics of the Cavity Evolution
,”
Phys. Rev. E Statist. Nonlinear Soft Matter Phys.
,
79
(
3
), pp.
3
25
.
17.
Brown
,
S.
,
Magar
,
V.
,
Greaves
,
D.
, and
Conley
,
D.
,
2014
, “
An Evaluation of RANS Turbulence Closure Models for Spilling Breakers
,”
Coast. Eng. Proc.
,
1
(
34
), pp.
5
0
.
18.
Fenton
,
J.
,
1988
, “
The Numerical Solution of Steady Water Wave Problems
,”
Comput. Geosci.
,
14
(
3
), pp.
357
368
.
19.
Bruinsma
,
N.
,
Paulsen
,
B. T.
, and
Jacobsen
,
N. G.
,
2017
, “
Validation and Application of a Fully Nonlinear Numerical Wave Tank for Simulating Floating Offshore Wind Turbines
,”
Ocean Eng.
,
1
(
12
), pp.
647
658
.
20.
Ferziger
,
J.
, and
Perić
,
M.
,
2012
,
Computatinal Methods for Fluid Dynamics
,
Springer Science & Business Media
,
New York
.
21.
Bruinsma
,
N.
,
2016
, “
Validation and Application of a Fully Nonlinear Numerical Wave Tank
,” Master’s thesis,
Technical University of Delft
,
Delft, Netherlands
.
22.
Krenk
,
S.
,
2001
,
Mechanics and Analysis of Beams, Columns and Cables: A Modern Introduction to the Classic Theories
,
Springer Science & Business Media
,
New York
.
23.
Tedesco
,
J.
,
McDougal
,
W.
, and
Rodd
,
C.
,
1999
,
Structural Dynamics
,
Addison Wesley Longman, Inc
.,
Boston, MA
.
24.
Hess
,
J.
, and
Smith
,
A.
,
1964
, “
Calculation of Non-Lifting Potential Flow About Arbitrary Three-Dimensional Bodies
,”
J. Ship Res.,
8
(
1
), pp.
22
44
.
25.
Lee
,
C.-H.
, and
Newman
,
J. N.
,
1989
, “
First- and Second-order Wave Effects on a Submerged Spheroid
,”
J. Ship Res.
,
35
(
3
), pp.
183
190
.
26.
Lee
,
C.-H.
,
1995
, “
WAMIT. Theory Manual
,” Tech. rep. (Report No. 95-2), Massachusetts Institute of Technology (MIT), Cambridge, MA.
27.
Morison
,
J.
,
Johnson
,
J.
, and
Schaaf
,
S.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
J. Petroleum Technol.
,
2
(
5
), pp.
149
154
.
28.
Newman
,
J.
,
1967
, “
The Drift Force and Moment on Ships in Waves
,”
J. Ship Res.,
11
(
1
), pp.
51
60
.
29.
Palm
,
J.
,
Eskilsson
,
C.
,
Paredes
,
G. M.
, and
Bergdahl
,
L.
,
2016
, “
Coupled Mooring Analysis for Floating Wave Energy Converters Using CFD: Formulation and Validation
,”
Int. J. Marine Energy
,
16
(
1
), pp.
83
99
.
30.
MacLachlan
,
N.
,
1947
, “
Mathieu Functions of Fractional Order
,”
Stud. Appl. Math.,
26
(
1–4
), pp.
29
41
.
31.
Koo
,
B.
,
Kim
,
M.
, and
Randall
,
R.
,
2004
, “
Mathieu Instability of a Spar Platform With Moorings and Risers
,”
Ocean Eng.,
31
(
17–18
), pp.
2175
2208
.
32.
Nayfeh
,
A.
, and
Mook
,
D.
,
1995
,
Nonlinear Oscillations
,
Wiley Interscience
,
NY
.
33.
Roberts
,
J.
,
1985
, “
Estimation of Nonlinear Ship Roll Damping From Free-Decay Data
,”
J. Ship Res.
,
29
(
2
), pp.
127
138
.
34.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
2006
,
Hydrodynamics Around Cylindrical Structures
,
World Scientific Publishing Co. Pvt. Ltd
,
Singapore
.
35.
Kirk
,
C.
,
1985
, “
Resonant Heave Motion of Semisubmersible Vessels
,”
Ocean Eng.
,
12
(
2
), pp.
177
184
.
36.
Williams
,
J.
,
1981
, “
Limiting Gravity Waves in Water of Finite Depth
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
302
(
1466
), pp.
139
188
.
37.
Fenton
,
J.
,
1990
, “
Nonlinear Wave Theories
,”
Sea: Ocean Eng. Sci.
,
9
(
1
), pp.
3
25
.
You do not currently have access to this content.