The simulation of wind and wave fields for the evaluation of jacket-supported offshore wind turbines during Hurricane Sandy of 2012 is the focus of this study. For realistic load assessment of offshore wind turbines, it is important that coupled wind, wave, and current fields with appropriate spatial resolution are provided throughout the evolution of the hurricane. A numerical model describing the hurricane track and intensity variation with time is used to generate the coupled wind, wave, and current fields. Time series of turbulent wind fields and coupled wave kinematics are generated using the hurricane simulation output, and a detailed procedure is presented. These coupled wind, wave, and current fields form the inputs for the analysis of a 5-MW offshore wind turbine supported on a jacket platform sited in 50 m of water and assumed located in the path of Hurricane Sandy. The turbine’s and support structure’s performance under the simulated loading conditions is the subject of a separate study.

References

1.
Schwartz
,
M.
,
Heimiller
,
D.
,
Haymes
,
S.
, and
Musial
,
W.
,
2010
, “
Assessment of Offshore Wind Energy Resources for the United States
,”
National Renewable Energy Lab. (NREL)
,
Golden, CO
, Technical Report.
2.
Blake
,
E. S.
,
Rappaport
,
E. N.
, and
Landsea
,
C. W.
,
2007
, “
The Deadliest, Costliest, and Most Intence United States Tropical Cyclones From 1851 to 2006
,” NOAA Technical Memorandum NWS TPC-5, Technical Report.
3.
Kim
,
E.
, and
Manuel
,
L.
,
2012
, “
A Framework for Hurricane Risk Assessment of Offshore Wind Farms
,” Proceedings of the 31st International Conference on Offshore Mechanics and Arctic Engineering
(OMAE).
,
Rio de Janeiro, Brazil
.
4.
Kim
,
E.
, and
Manuel
,
L.
,
2016
, “
Hurricane Risk Assessment for Offshore Wind Plants
,”
Wind Eng.
,
40
(
3
), pp.
261
269
.
5.
Chen
,
S. S.
,
Price
,
J. F.
,
Zhao
,
W.
,
Donelan
,
M. A.
, and
Walsh
,
E. J.
,
2007
, “
The CBLAST-Hurricane Program and the Next-Generation Fully Coupled Atmosphere-Wave-Ocean Models for Hurricane Research and Prediction
,”
Bull. Am. Meteorol. Soc.
,
88
(
3
), pp.
311
374
.
6.
Chen
,
S. S.
,
Zhao
,
W.
,
Donelan
,
M. A.
, and
Tolman
,
H. L.
,
2013
, “
Directional Wind–Wave Coupling in Fully Coupled Atmosphere–Wave–Ocean Models: Results From CBLAST-Hurricane
,”
J. Atmos. Sci.
,
70
(
10
), pp.
3198
3215
.
7.
Curcic
,
M.
,
Kim
,
E.
,
Manuel
,
L.
,
Chen
,
S.
,
Donelan
,
M.
, and
Michalakes
,
J.
,
2013
, “
Coupled Atmosphere-Wave-Ocean Modeling to Characterize Hurricane Load Cases for Offshore Wind Turbines
,”
51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
National Harbor, MD
.
8.
Hill
,
C.
,
DeLuca
,
C.
,
Balaji
,
V.
,
Suarez
,
M.
, and
da Silva
,
A.
,
2004
, “
The Architecture of the Earth System Modeling Framework
,”
Comput. Sci. Eng.
,
6
(
1
), pp.
18
28
.
9.
Kim
,
E.
, and
Manuel
,
L.
,
2016
, “
Loads on a Jacket-Supported Wind Turbine During Hurricane Sandy Simulation
,”
35th International Conference on Offshore Mechanics and Arctic Engineering.
,
Busan, Korea
.
10.
Donelan
,
M. A.
,
Curcic
,
M.
,
Chen
,
S. S.
, and
Magnusson
,
A. K.
,
2012
, “
Modeling Waves and Wind Stress
,”
J. Geophys. Res. Oceans
,
117
(
C11
), pp.
1
26
.
11.
Kim
,
E.
,
Manuel
,
L.
,
Curcic
,
M.
,
Chen
,
S. S.
,
Phillips
,
C.
, and
Veers
,
P.
,
2016
, “
On the Use of Coupled Wind, Wave, and Current Fields in the Simulation of Loads on Bottom-Supported Offshore Wind Turbines During Hurricanes: March 2012-September 2015
,”
National Renewable Energy Lab. (NREL)
,
Golden, CO
, Technical Report.
12.
Sharma
,
N.
, and
Dean
,
R.
,
1981
, “
Second-Order Directional Seas and Associated Wave Forces
,”
Soc. Pet. Eng. J.
,
21
(
1
), pp.
129
140
.
13.
Longuet-Higgins
,
M.
,
Cartwright
,
D.
, and
Smith
,
N.
,
1962
, “
Observations of the Directional Spectrum of Sea Waves Using the Motions of a Floating Buoy
,”
Ocean Wave Spectra, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences
,
Easton, MD
.
14.
Agarwal
,
P.
, and
Manuel
,
L.
,
2011
, “
Incorporating Irregular Nonlinear Waves in Coupled Simulation and Reliability Studies of Offshore Wind Turbines
,”
Appl. Ocean Res.
,
33
(
3
), pp.
215
227
.
15.
Jonkman
,
J. M.
, and
Buhl
,
M. L.
, Jr.
,
2005
, “
FAST User’s Guide
,”
National Renewable Energy Laboratory
,
Golden, CO
, Technical Report No. NREL/EL-500-38230.
16.
Wang
,
W.
,
Bruyere
,
C.
,
Duda
,
M.
,
Dudhia
,
J.
,
Gill
,
D.
,
Lin
,
H. C.
, and
Mandel
,
J.
,
2015
,
Advanced Research WRF Version 3 Modeling System User’s Guide
.
National Center for Atmospheric Research
,
Boulder, CO
.
17.
Kaimal
,
J.
,
Wyngaard
,
J.
,
Izumi
,
Y.
, and
Cotr
,
O.
,
1972
, “
Spectral Characteristics of Surface Layer Turbulence
,”
Q. J. R. Metereol. Soc.
,
98
(
417
), pp.
563
589
.
18.
Hsu
,
S. A.
,
Blanchard
,
B. W.
, and
Yan
,
Z.
,
1999
, “
A Simplified Equation for Paulson’s ψm(z/l) Formulation for Overwater Applications
,”
J. Appl. Meteorol.
38
(
5
), pp.
623
625
.
19.
Veers
,
P. S.
,
1988
, “
Three-Dimensional Wind Simulation
,”
Sandia National Laboratory
,
Albuquerque, NM
, Technical Report No. SAND88-0152.
20.
International Electrotechnical Commission
,
2007
,
IEC 61400-1 Wind Turbines—Part 1: Design
.
International Electrotechnical Commission
,
Geneva, Switzerland
.
21.
Simiu
,
E.
, and
Scanlan
,
R. H.
,
1996
,
Wind Effects on Structures: Fundamentals and Applications to Design
, 3rd ed.,
John Wiley and Sons
,
New York
.
22.
Solari
,
G.
, and
Piccardo
,
G.
,
2001
, “
Probabilistic 3-D Turbulence Modeling for Gust Buffeting of Structures
,”
Probabilistic Eng. Mech.
,
16
(
1
), pp.
73
86
.
You do not currently have access to this content.