Abstract

Dust resuspension inside the vacuum vessel (VV) is one of the safety issues of the fusion reactor ITER. Plasma interaction with the plasma facing components (PFC) leads to their erosion, generating dust. One of the accident scenarios leading to dust resuspension is the ingress of coolant event (ICE) where a leak of the coolant pipes inside the VV conducts to injection and flash atomization of the cooling water. The metallic dust, produced by the erosion, is then oxidized by water throughout an exothermic reaction that produces hydrogen leading to a loss of confinement risk due to hydrogen and dust combustion. The steam flow, produced by the flash atomization of the liquid leaking from the breach, is considered to be the main source of dust resuspension. Therefore, experimentations about the two-phase flow generated by the flashing liquid jet are important to identify the main physical phenomena involved in the aerosol particles resuspension for ITER-like conditions that impose in particular low pressure level. Flash-boiling experiments were conducted under primary vacuum conditions. We studied the behavior and the structure of the flow resulting from superheated water injection into low pressure environment. Using shadowgraphy and particle image velocity (PIV), qualitative information and quantitative measurements on the two-phase flow that develops for different superheat conditions were gathered. The measured spray lateral spreading and droplets velocity are shown to increase with the superheat level. The use of a transparent nozzle also confirmed the strong coupling between the external structure of the atomized spray and the two-phase flow that develops upstream of the coolant circuit breach.

References

1.
Skinner
,
C. H.
,
2009
, “
Atomic Physics in the Quest for Fusion Energy and ITER
,”
Phys. Scr.
,
T134
, p.
014022
.10.1088/0031-8949/2009/T134/014022
2.
Shimada
,
M.
,
Pitts
,
R. A.
,
Ciattaglia
,
S.
,
Carpentier
,
S.
,
Choi
,
C. H.
,
Dell Orco
,
G.
,
Hirai
,
T.
,
Kukushkin
,
A.
,
Lisgo
,
S.
,
Palmer
,
J.
,
Shu
,
W.
, and
Veshchev
,
E.
,
2013
, “
In-Vessel Dust and Tritium Control Strategy in ITER
,”
J. Nucl. Mater.
,
438
, pp.
S996
S1000
.10.1016/j.jnucmat.2013.01.217
3.
Ogawa
,
M.
, and
Kunugi
,
T.
,
1995
, “
Thermohydraulic Experiments on a Water Jet Into Vacuum During Ingress of Coolant Event in a Fusion Experimental Reactor
,”
Fusion Eng. Des.
,
29
pp.
233
237
.10.1016/0920-3796(95)80029-W
4.
Honda
,
T.
,
Bartels
,
H.-W.
,
Merrill
,
B.
,
Inabe
,
T.
,
Petti
,
D.
,
Moore
,
R.
, and
Okazaki
,
T.
,
2000
, “
Analyses of Loss of Vacuum Accident (LOVA) in ITER
,”
Fusion Eng. Des.
,
47
(
4
), pp.
361
375
.10.1016/S0920-3796(99)00067-8
5.
Baumann
,
W.
,
Breitung
,
W.
,
Kaup
,
B.
,
Necker
,
G.
,
Royl
,
P.
, and
Travis
,
J. R.
,
2002
, “
A Three-Dimensional Multi-Volume Analysis of Combustible Mixture Generation Due to In-Vessel LOCA of ITER Using the GASFLOW Code
,”
Fusion Eng. Des.
,
63–64
, pp.
173
180
.10.1016/S0920-3796(02)00135-7
6.
Gensdarmes
,
F.
,
Grisolia
,
C.
,
Roynette
,
A.
,
Peillon
,
S.
,
Gelain
,
T.
,
Poli
,
S.
, and
Gargiulo
,
L.
,
2013
, “
Tore Supra Carbon Dust Resuspension Studies
,”
Fusion Eng. Des.
,
88
(
9–10
), pp.
2684
2687
.10.1016/j.fusengdes.2013.02.148
7.
Peillon
,
S.
,
Roynette
,
A.
,
Grisolia
,
C.
, and
Gensdarmes
,
F.
,
2014
, “
Resuspension of Carbon Dust Collected in Tore Supra and Exposed to Turbulent Airflow: Controlled Experiments and Comparison With Model
,”
Fusion Eng. Des.
,
89
(
11
), pp.
2789
2796
.10.1016/j.fusengdes.2014.08.004
8.
Gelain
,
T.
,
Rondeau
,
A.
,
Peillon
,
S.
,
Sabroux
,
J. C.
, and
Gensdarmes
,
F.
,
2015
, “
CFD Modelling of the Wall Friction Velocity Field in the ITER Tokamak Resulting From Airflow During a Loss of Vacuum Accident—Consequences for Particle Resuspension
,”
Fusion Eng. Des.
,
100
, pp.
87
99
.10.1016/j.fusengdes.2015.04.043
9.
Gelain
,
T.
,
Gensdarmes
,
F.
,
Peillon
,
S.
, and
Ricciardi
,
L.
,
2020
, “
CFD Modelling of Particle Resuspension in a Toroidal Geometry Resulting From Airflows During a Loss of Vacuum Accident (LOVA)
,”
Fusion Eng. Des.
,
151
, p.
111386
.10.1016/j.fusengdes.2019.111386
10.
Bellecci
,
C.
,
Gaudio
,
P.
,
Lupelli
,
I.
,
Malizia
,
A.
,
Porfiri
,
M. T.
,
Quaranta
,
R.
, and
Richetta
,
M.
,
2011
, “
STARDUST Experimental Campaign and Numerical Simulations: Influence of Obstacles and Temperature on Dust Resuspension in Vacuum Vessel Under LOVA
,”
Nucl. Fusion
,
51
(
5
), p.
053017
.10.1088/0029-5515/51/5/053017
11.
Rondeau
,
A.
,
Merrison
,
J.
,
Iversen
,
J. J.
,
Peillon
,
S.
,
Sabroux
,
J. C.
,
Lemaitre
,
P.
,
Gensdarmes
,
F.
, and
Chassefière
,
R.
,
2015
, “
First Experimental Results of Particle Re-Suspension in a Low Pressure Wind Tunnel Applied to the Issue of Dust in Fusion Reactors
,”
Fusion Eng. Des.
,
98–99
, pp.
2210
2213
.10.1016/j.fusengdes.2014.12.038
12.
Porcheron
,
E.
,
En-Nougaoui
,
A.
,
Lemaitre
,
P.
, and
Nuboer
,
A.
,
2014
, “
Experimental Study of Dust Resuspension at Low Pressure Conditions for the ITER Tokamak
,” Proceedings of the 23rd International Conference on Nuclear Engineering (
ICONE-23
), Chiba, Japan, May 17–21, Paper No. #1620.https://www.researchgate.net/publication/317003426_EXPERIMENTAL_STUDY_OF_DUST_RESUSPENSION_AT_LOW_PRESSURE_FOR_REPRESENTAT
13.
Porcheron
,
E.
, and
Lemaitre
,
P.
,
2017
, “
Investigation of Air Ingress Into a Vacuum Vessel Related to Particle Re-Suspension and Distribution for Dust Issues in ITER
,”
ASME
Paper No. ICONE25-67496.10.1115/ICONE25-67496
14.
Hasan
,
M. Z.
,
Monde
,
M.
,
Mitsutake
,
Y.
, and
Iwamoto
,
K.
,
1998
, “
An Experimental Study of Ingress-of-Coolant Accident in Fusion Reactors
,”
Fusion Eng. Des.
,
42
(
1–4
), pp.
73
81
.10.1016/S0920-3796(98)00175-6
15.
Takase
,
K.
,
Akimoto
,
H.
, and
Topilski
,
L. N.
,
2001
, “
Results of Two-Phase Flow Experiments With an Integrated Ingress-of-Coolant Event (ICE) Test Facility for ITER Safety
,”
Fusion Eng. Des.
,
54
(
3–4
), pp.
593
603
.10.1016/S0920-3796(00)00572-X
16.
Reeks
,
M. W.
, and
Hall
,
D.
,
2001
, “
Kinetic Models for Particle Resuspension in Turbulent Flows: Theory and Measurement
,”
J. Aerosol Sci.
,
32
(
1
), pp.
1
31
.10.1016/S0021-8502(00)00063-X
17.
Willeke
,
K.
, and
Baron
,
P. A.
,
1993
,
Aerosol Measurement: Principles, Techniques and Applications
,
Van Nostrand-Reinhold
,
New York
.
18.
Renoux
,
A.
, and
Boulaud
,
D.
,
1998
,
Les Aérosols: Physique et Métrologie
,
Tec & Doc Lavoisier
, Cachan, France.
19.
Hinds
,
W. C.
,
1999
,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
,
Wiley
, New York.
20.
Israelachvili
,
J. N.
,
2011
,
Intermolecular and Surface Forces
,
Elsevier
, New York.
21.
Rondeau
,
A.
,
2015
, “
Étude de la mise en suspension aéraulique appliquée à la problématique des poussières dans le futur tokamak ITER
,” Doctoral dissertation, Université Paris-Saclay, Saclay, France.
22.
Peillon
,
S.
,
Sow
,
M.
,
Grisolia
,
C.
,
Miserque
,
F.
, and
Gensdarmes
,
F.
,
2017
, “
Mobilization of Tungsten Dust by Electric Forces and Its Bearing on Tritiated Particles in the ITER Tokamak
,”
J. Electrostat.
,
88
, pp.
111
115
.10.1016/j.elstat.2017.01.020
23.
Lienhard
,
J. H.
, and
Day
,
J. B.
,
1970
, “
The Breakup of Superheated Liquid Jets
,”
ASME J. Basic Eng.
,
92
(
3
), pp.
515
522
.10.1115/1.3425051
24.
Park
,
B. S.
, and
Lee
,
S. Y.
,
1994
, “
An Experimental Investigation of the Flash Atomization Mechanism
,”
Atom. Sprays
,
4
(
2
), pp.
159
179
.10.1615/AtomizSpr.v4.i2.30
25.
Lamanna
,
G.
,
Kamoun
,
H.
,
Weigand
,
B.
, and
Steelant
,
J.
,
2014
, “
Towards a Unified Treatment of Fully Flashing Sprays
,”
Int. J. Multiphase Flow
,
58
pp.
168
184
.10.1016/j.ijmultiphaseflow.2013.08.010
26.
Lamanna
,
G.
,
Kamoun
,
H.
,
Weigand
,
B.
,
Manfletti
,
C.
,
Rees
,
A.
,
Sender
,
J.
,
Oschwald
,
M.
, and
Steelant
,
J.
,
2015
, “
Flashing Behavior of Rocket Engine Propellants
,”
Atom. Sprays
,
25
(
10
), pp.
837
856
.10.1615/AtomizSpr.2015010398
27.
Blaisot
,
B.
,
Porcheron
,
E.
,
Praud
,
O.
, and
Roig
,
V.
,
2019
, “
Flash-Boiling Characterization During Ingress Coolant Event (ICE) for Dust Issue in ITER
,” Proceedings of the 27th International Conference on Nuclear Engineering (
ICONE-27
), Chiba, Japan, May 19–24, Paper No. 1057, p.
8
.10.1299/jsmeicone.2019.27.1057
28.
Gastaldo
,
L.
,
2019
, “
The CALIF3S-P2REMICS software - An Application to Underexpanded Hydrogen Jets Deflagration
,”
Eighth International Conference on Hydrogen Safety (ICHS 2019)
, Adelaide, Australia, Sept. 24–26, Paper No. 126.
29.
García-Cascales
,
J. R.
,
Velasco
,
F. J. S.
,
Otón-Martínez
,
R. A.
,
Espín-Tolosa
,
S.
,
Bentaib
,
A.
,
Meynet
,
N.
, and
Bleyer
,
A.
,
2015
, “
Characterisation of Metal Combustion With DUST Code
,”
Fusion Eng. Des.
,
98–99
pp.
2142
2146
.10.1016/j.fusengdes.2015.03.012
30.
Chatelard
,
P.
,
Belon
,
S.
,
Bosland
,
L.
,
Carénini
,
L.
,
Coindreau
,
O.
,
Cousin
,
F.
,
Marchetto
,
C.
,
Nowack
,
H.
,
Piar
,
L.
, and
Chailan
,
L.
,
2016
, “
Main Modelling Features of ASTEC V2. 1 Major Version
,”
Ann. Nucl. Energy
,
93
, pp.
83
93
.10.1016/j.anucene.2015.12.026
31.
Peter
,
E. M.
,
Takimoto
,
A.
, and
Hayashi
,
Y.
,
1994
, “
Flashing and Shattering Phenomena of Superheated Liquid Jets
,”
JSME Int. J. Ser. B Fluids Therm. Eng.
,
37
(
2
), pp.
313
321
.10.1299/jsmeb.37.313
32.
Girshick
,
S. L.
,
Chiu
,
C.-P.
, and
McMurry
,
P. H.
,
1990
, “
Time-Dependent Aerosol Models and Homogeneous Nucleation Rates
,”
Aerosol Sci. Technol.
,
13
(
4
), pp.
465
477
.10.1080/02786829008959461
33.
Blaisot
,
B.
,
Porcheron
,
E.
,
Praud
,
O.
, and
Roig
,
V.
,
2018
, “
Flash-Boiling Atomization of Water in Vacuum: Application for ITER Safety
,”
Proceedings of the 14th International Conference on Liquid Atomization and Spray Systems (ICLASS 2018)
, Chicago, IL, July
22
26
.
34.
Glover
,
A. R.
,
Skippon
,
S. M.
, and
Boyle
,
R. D.
,
1995
, “
Interferometric Laser Imaging for Droplet Sizing: A Method for Droplet-Size Measurement in Sparse Spray Systems
,”
Appl. Opt.
,
34
(
36
), pp.
8409
8421
.10.1364/AO.34.008409
35.
Porcheron
,
E.
,
Lemaitre
,
P.
,
Nuboer
,
A.
,
Rochas
,
V.
, and
Vendel
,
J.
,
2007
, “
Experimental Investigation in the TOSQAN Facility of Heat and Mass Transfers in a Spray for Containment Application
,”
Nucl. Eng. Des.
,
237
(
15–17
), pp.
1862
1871
.10.1016/j.nucengdes.2007.01.018
36.
Bachalo
,
W. D.
, and
Houser
,
M. J.
,
1984
, “
Phase/Doppler Spray Analyzer for Simultaneous Measurements of Drop Size and Velocity Distributions
,”
Opt. Eng.
,
23
(
5
), pp. 583–590. 10.1117/12.7973341
37.
Luo
,
M.
, and
Haidn
,
O. J.
,
2016
, “
Characterization of Flashing Phenomena With Cryogenic Fluid Under Vacuum Conditions
,”
J. Propul. Power
,
32
(
5
), pp.
1253
1263
.10.2514/1.B35963
38.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry: A Practical Guide
,
Springer
, Berlin, Germany.
39.
Karplus
,
H. B.
,
1961
,
Propagation of Pressure Waves in a Mixture of Steam and Water
,
Armour Research Foundation of Illinois Institute of Technology
, Chicago, IL, AEC Report No. ARF
4132
12
.
You do not currently have access to this content.