Abstract

The dynamic characteristics of rolling element bearings are strongly related to their geometric and operating parameters, most importantly the bearing unbalance. Modern condition monitoring necessitates the use of intrinsic mode functions (IMFs) to diagnose unbalance bearing failure. This paper presents a Hilbert–Huang transform (HHT) method to diagnose the unbalanced rolling bearing faults of rotating machinery. To initially reduce the noise levels with slight signal distortion, the noises of the sample in normal and unbalanced fault states are measured and denoised using the wavelet threshold approach. The complex vibration signatures are decomposed into finite IMFs with ensemble empirical mode decomposition technique. Fast Fourier techniques are employed to extract the vibration responses of bearings that are artificially damaged using electrochemical machining on a newly established test setup for rotor disc bearings. The similarities between the information-contained marginal Hilbert spectra can be used to diagnose rotating machinery bearing faults. The data marginal Hilbert spectra of Mahalanobis and cosine index are compared to determine the fault indicator index’s similarity score. The HHT model’s simplicity enhanced the precision of diagnosis correlated to the results of the experiments with weak fault characteristic signals. The effectiveness of the proposed approach is evaluated with several theoretical models from the literature. The HHT approach is experimentally proven with unbalance diagnosis and capable of classifying marginal Hilbert spectra distribution. Because of its superior time-frequency characteristics and pattern identification of marginal Hilbert spectra and fault indicator indices, the newly stated HHT can process nonlinear, non-stationary, and even transient signals. The findings demonstrate that the suggested method is superior in terms of unbalance fault identification accuracy for monitoring the dynamic stability of industrial rotating machinery.

References

1.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.
2.
Liu
,
J.
, and
Shao
,
Y.
,
2018
, “
Overview of Dynamic Modelling and Analysis of Rolling Element Bearings With Localized and Distributed Faults
,”
Nonlinear Dyn.
,
93
(
1
), pp.
1765
1798
.
3.
Wu
,
T. Y.
,
Chung
,
Y. L.
, and
Liu
,
C. H.
,
2010
, “
Looseness Diagnosis of Rotating Machinery Via Vibration Analysis Through Hilbert–Huang Transform Approach
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031005
.
4.
Rai
,
V. K.
, and
Mohanty
,
A. R.
,
2007
, “
Bearing Fault Diagnosis Using FFT of Intrinsic Mode Functions in Hilbert–Huang Transform
,”
Mech. Syst. Signal Process
,
21
(
6
), pp.
2607
2615
.
5.
Dick
,
P.
,
Carl
,
H.
,
Nader
,
S.
,
Alireza
,
M. A.
, and
Sarabjeet
,
S.
,
2015
, “
Analysis of Bearing Stiffness Variations Contact Forces and Vibrations in Radially Loaded Double Row Rolling Element Bearing With Raceway Defect
,”
J. Mech. Syst. Signal Process.
,
50–51
(
1
), pp.
139
160
.
6.
Tandon
,
N.
, and
Choudhury
,
A.
,
1998
, “
A Theoretical Model to Predict Vibration Response of Rolling Bearings to Distributed Defects Under Radial Load
,”
ASME J. Vib. Acoust.
,
120
(
3
), pp.
214
220
.
7.
Wang
,
Y. S.
,
Ma
,
Q. H.
,
Zhu
,
Q.
,
Liu
,
X. T.
, and
Zhao
,
L. H.
,
2014
, “
An Intelligent Approach for Engine Fault Diagnosis Based on Hilbert–Huang Transform and Support Vector Machine
,”
Appl. Acoust.
,
75
(
1
), pp.
1
9
.
8.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. London, Ser. A
,
454
(
1971
), pp.
903
995
.
9.
Wu
,
Z.
, and
Huang
,
N. E.
,
2009
, “
Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method
,”
Adv. Adaptive Data Anal.
,
1
(
1
), pp.
1
41
.
10.
Ibn
,
S. M.
, and
Sinha
,
J. K.
,
2016
, “
Rotor Unbalance Estimation With Reduced Number of Sensors
,”
Machines
,
4
(
4
), pp.
1
19
.
11.
Yu
,
D.
,
Yang
,
Y.
, and
Cheng
,
J.
,
2007
, “
Application of Time–Frequency Entropy Method Based on Hilbert–Huang Transform to Gear Fault Diagnosis
,”
Measurement
,
40
(
9
), pp.
823
830
.
12.
Song
,
H.
,
Ma
,
W.
,
Han
,
Z.
, and
Zhu
,
X.
,
2022
, “
Diagnosis of Unbalanced Rolling Bearing Fault Sample Based on Adaptive Sparse Contractive Auto-Encoder and IGWO-USELM
,”
Measurement
,
198
(
1
), p.
111353
.
13.
Zhang
,
Y.
,
Wang
,
W.
,
Wei
,
D.
,
Wang
,
G.
,
Xu
,
J.
, and
Liu
,
K.
,
2022
, “
Dynamic Stability of Unbalance-Induced Vibration in a Turbocharger Rotor-Bearing System With the Nonlinear Effect of Thermal Turbulent Lubricating Fluid Film
,”
J. Sound Vib.
,
528
(
1
), p.
116909
.
14.
Liu
,
H.
,
Wang
,
X.
, and
Lu
,
C.
,
2014
, “
Rolling Bearing Fault Diagnosis Under Variable Conditions Using Hilbert-Huang Transform and Singular Value Decomposition
,”
Math. Prob. Eng.
,
2014
(
1
), pp.
1
10
.
15.
Shinde
,
P. V.
, and
Desavale
,
R. G.
,
2022
, “
Application of Dimension Analysis and Soft Competitive Tool to Predict Compound Faults Present in Rotor-Bearing Systems
,”
Measurement
,
193
(
1
), p.
110984
.
16.
Li
,
B.
, and
Zhang
,
Y.
,
2011
, “
Supervised Locally Linear Embedding Projection for Machinery Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
25
(
8
), pp.
3125
3134
.
17.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1984
, “
Model for Vibration Produced by a Single Point Defect in a Rolling Element Bearing
,”
J. Sound Vib.
,
96
(
1
), pp.
69
82
.
18.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1985
, “
Vibration Produced by Multiple Point Defects in a Rolling Element Bearing
,”
J. Sound Vib.
,
98
(
2
), pp.
263
273
.
19.
Patil
,
M. S.
,
Mathew
,
J.
,
Rajendrakumar
,
P. K.
, and
Desai
,
S.
,
2010
, “
A Theoretical Model to Predict the Effect of Localized Defect on Vibrations Associated with Ball Bearing
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1193
1201
.
20.
Igarashi
,
T.
, and
Kato
,
J.
,
1985
, “
Studies on the Vibration and Sound of Defective Rolling Bearings. Third Report: Vibration of Ball Bearing With Multiple Defects
,”
Bull. JSME
,
28
(
237
), pp.
492
499
.
21.
Sopanen
,
J.
, and
Mikkola
,
A.
,
2003
, “
Dynamic Model of a Deep-Groove Ball Bearings Including Localized and Distributed Defects. Part 1: Theory
,”
Proc. Inst. Mech. Eng., Part K
,
217
(
K
), pp.
201
211
.
22.
Sopanen
,
J.
, and
Mikkola
,
A.
,
2003
, “
Dynamic Model of a Deep-Groove Ball Bearings Including Localized and Distributed Defects. Part 2: Implementation and Results
,”
Proc. Inst. Mech. Eng., Part K
,
217
(
3
), pp.
213
223
.
23.
Tandon
,
N.
, and
Choudhury
,
A.
,
1997
, “
An Analytical Model for the Prediction of the Vibration Response of Rolling Element Bearings Due to Localized Defect
,”
J. Sound Vib.
,
205
(
3
), pp.
275
292
.
24.
Choudhury
,
A.
, and
Tandon
,
N.
,
2006
, “
Vibration Response of Rolling Element Bearing in a Rotor Bearing System to a Local Defect Under Radial Load
,”
ASME J. Tribol.
,
128
(
2
), pp.
252
261
.
25.
Tomovic
,
R.
,
Miltenovic
,
V.
,
Banic
,
M.
, and
Miltenovic
,
A.
,
2010
, “
Vibration Response of Rigid Rotor in Unloaded Rolling Element Bearing
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1176
1185
.
26.
Desavale
,
R. G.
,
Venkatachalam
,
R.
, and
Chavan
,
S. P.
,
2013
, “
Antifriction Bearings Damage Analysis Using Experimental Data Based Models
,”
ASME J. Tribol.
,
135
(
4
), p.
041105
.
27.
Desavale
,
R. G.
,
Venkatachalam
,
R.
, and
Chavan
,
S. P.
,
2014
, “
Experimental and Numerical Studies on Spherical Roller Bearings Using Multivariable Regression Analysis
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021022
.
28.
Desavale
,
R. G.
,
Kanai
,
R. A.
,
Chavan
,
S. P.
,
Venkatachalam
,
R.
, and
Jadhav
,
P. M.
,
2015
, “
Vibration Characteristics Diagnosis of Roller Bearing Using the New Empirical Model
,”
ASME J. Tribol.
,
138
(
1
), p.
011103
.
29.
Desavale
,
R. G.
,
2019
, “
Dynamics Characteristic and Diagnosis of a Rotor-Bearing’s System Through a Dimensional Analysis Approach: An Experimental Study
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
2
), p.
014501
.
30.
Mufazzal
,
S.
,
Muzzakir
,
S. M.
, and
Khanam
,
S.
,
2021
, “
Theoretical and Experimental Analyses of Vibration Impulses and Their Influence on Accurate Diagnosis of Ball Bearing With Localized Outer Race Defect
,”
J. Sound Vib.
,
513
(
1
), p.
116407
.
31.
Patil
,
S. M.
,
Desavale
,
R. G.
,
Shinde
,
P. V.
, and
Patil
,
V. R.
,
2020
, “Comparative Study of Response of Vibrations for Circular and Square Defects on Components of Cylindrical Roller Bearing Under Different Conditions,”
Lecture Notes in Mechanical Engineering Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering
,
N.
Gascoin
and
E.
Balasubramanian
, eds.,
Springer
,
New York
, pp.
189
198
.
32.
Kanai
,
R. A.
,
Desavale
,
R. G.
, and
Chavan
,
S. P.
,
2016
, “
Experimental–Based Fault Diagnosis of Rolling Bearings Using Artificial Neural Network
,”
ASME J. Tribol.
,
138
(
3
), p.
031103
.
33.
Patel
,
V. N.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2010
, “
A Dynamic Model for Vibration Studies of Deep Groove Ball Bearings Considering Single and Multiple Defects in Races
,”
ASME J. Tribol.
,
132
(
4
), p.
041101
.
34.
Jing
,
L.
,
2020
, “
A Dynamic Modelling Method of a Rotor-Roller Bearing-Housing System With a Localized Fault Including the Additional Excitation Zone
,”
J. Sound Vib.
,
469
(
1
), p.
115144
.
35.
Linkai
,
N.
,
Hongrui
,
C.
,
Huipeng
,
H.
,
Bing
,
W.
,
Yuan
,
L.
, and
Xiaoyan
,
X.
,
2020
, “
Experimental Observations and Dynamic Modeling of Vibration Characteristics of a Cylindrical Roller Bearing With Roller Defects
,”
J. Mech. Syst. Signal Process.
,
138
(
1
), pp.
1
19
.
36.
Rafsanjani
,
A.
,
Abbasion
,
S.
,
Farshidianfar
,
A.
, and
Moeenfard
,
H.
,
2009
, “
Nonlinear Dynamic Modeling of Surface Defects in Rolling Element Bearing Systems
,”
J. Sound Vib.
,
319
(
3–5
), pp.
1150
1174
.
37.
Rui
,
Y.
,
Lei
,
H.
,
Yulin
,
J.
,
Yushu
,
C.
, and
Zhiyong
,
Z.
,
2018
, “
The Varying Compliance Resonance in a Ball Bearing Rotor System Affected by Different Ball Numbers and Rotor Eccentricities
,”
ASME J. Tribol.
,
140
(
5
), p.
051101
.
38.
Jadhav
,
P. M.
,
Kumbhar
,
S. G.
,
Desavale
,
R. G.
, and
Patil
,
S. B.
,
2020
, “
Distributed Fault Diagnosis of Rotor-Bearing System Using Dimensional Analysis and Experimental Methods
,”
Measurement
,
166
(
1
), p.
108239
.
39.
Kumbhar
,
S. G.
,
Sudhagar
,
E. P.
, and
Desavale
,
R. G.
,
2020
, “
Theoretical and Experimental Studies to Predict Vibration Responses of Defects in Spherical Roller Bearings Using Dimension Theory
,”
Measurement
,
161
(
1
), p.
107846
.
40.
Kumbhar
,
S. G.
, and
Sudhagar
,
E. P.
,
2020
, “
Fault Diagnostics of Roller Bearings Using Dimension Theory
,”
ASME J. Non. Eval. Diag. Prog. Eng. Syst.
,
4
(
1
), p.
011001
.
41.
Salunkhe
,
V. G.
,
Desavale
,
R. G.
, and
Jagadeesha
,
T.
,
2021
, “
Experimental Frequency-Domain Vibration Based Fault Diagnosis of Roller Element Bearings Using Support Vector Machine
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
7
(
2
), p.
021001
.
42.
Shinde
,
P. V.
,
Desavale
,
R. G.
,
Jadhav
,
P. M.
, and
Sawant
,
S. H.
,
2023
, “
A Multi Fault Classification in a Rotor-Bearing System Using Machine Learning Approach
,”
J. Braz. Soc. Mech. Sci. Eng.
,
45
(
2
), p.
121
.
43.
Vishwendra
,
M. A.
,
Salunkhe
,
P. S.
,
Patil
,
S. V.
,
Shinde
,
S. A.
,
Shinde
,
P. V.
,
Desavale
,
R. G.
,
Jadhav
,
P. M.
, and
Dharwadkar
,
N. V.
,
2022
, “
A Novel Method to Classify Rolling Element Bearing Faults Using K-Nearest Neighbor Machine Learning Algorithm
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
8
(
3
), p.
031202
.
44.
Mohanty
,
A. R.
,
2018
,
Machinery Condition Monitoring: Principles and Practices
,
CRC Press
,
Boca Raton, FL
.
45.
Hertz
,
H.
,
1881
, “
On the Contact of Elastic Solids
,”
J. Reine. Angew. Math.
,
92
(
1
), pp.
156
171
.
You do not currently have access to this content.