Essentially, the performance improvement of automotive systems is a multi-objective optimization problem [14] due to the challenges in both operation management and control. The interconnected dynamics inside the automotive system normally requires precise tuning and coordination of accessible system inputs. In the past, such optimization problems have been approximately solved through expensive calibration procedures or an off-line local model-based approaches where either a regressive model or a first-principle model is used. The model-based optimization provides the advantage of finding the optimal model parameters to allow the model to be used to predict the real system behavior reasonably [5]. However, other than the model complexities, there are practically two issues facing the integrity of these models: modeling uncertainty due to inaccurate parameter values and/or unmodeled dynamics, and locally effective range around operating points. As a result, the optimum solutions extracted from the model-based approach could be subject to failure of expected performance [6].

References

1.
Guzzella
,
L.
Amstutz
,
Control of diesel engines,”
IEEE Control Systems Magazine
vol. 18
,
No.5
,
1998
, pp.
53
71.
2.
Zhu
,
G.
,
Wang
,
J.
Sun
,
Z.
Chen
,
X.
“Tutorial of model-based powertrain and aftertreatment system control design and implementation,”
American Control Conference
, Chicago,
2015
, pp.
2093
2110.
3.
Kiencke
,
U.
Nielsen
,
L.
Automotive Control Systems - for Engine, Driveline, and Vehicle
. Springer-Verlag Berlin Heidelberg, 2nd Edition,
2005.
4.
Del Re
,
L.
Allgower
,
F.
Glielmo
,
L.
Guardiola
,
C.
Kolmanovsky
,
I.
Automotive Model Predictive Control - Models, Methods, and Applications
. Springer-Verlag London,
2010
.
5.
Hou
,
Z.
Wang
,
Z.
“From model-based control to data-driven control: survey, classification and perspective,"
Information Sciences
,
vol. 235
,
2012
, pp.
3
35
6.
Bengtsson
,
J.
Strandh
,
P.
Johansson
,
R.
Tunestal
,
P.
Johansson
,
B.
“Model predictive control of homogeneous charge compression ignition engine dynamics,”
IEEE International Conference on Control Applications
, Los Alamitos,
2006
, pp.
1675
1680.
7.
Guzzella
,
L.
Onder
,
C.
Introduction to Modeling and Control of Internal Combustion Engine Systems
. Berlin: Springer-Verlag,
2010.
8.
Hou
,
Z.
,
Gao
,
H.
Lewis
,
and F.
“Data-Driven Control and Learning Systems",
IEEE Transactions on Industrial Electronics
,
vol. 64
,
No. 5
,
2017
, pp.
4070
4075.
9.
Formentin
,
S.
,
van Heusden
,
K.
Karimi
,
A.
“A comparison of model-based and data-driven controller tuning,”
Internationaljournal of Adaptive Control Signal Processing,
vol. 28
,
No. 10
,
2012
, pp.
882
897
.
10.
Bazanella
,
A.S.
,
Campestrini
,
L.
Eckhard
,
D.
Data-driven controller design -the H2
approach.
Springer
Netherlands
,
2012.
11.
Popovic
,
D.
,
Jankovic
,
M.
Magner
,
S.
R. Teel
,
A.
“Extremum seeking methods for optimization of variable cam timing engine operation,”
IEEE Transactions on Control Systems Technology
,
vol.14
,
No.3
,
2006
, pp.
398
407
.
12.
Tan
,
Q.
,
Tan
,
P Divekar, Y.
Chen
,
X.
Zheng
,
M.
“Model-guided extremum seeking for diesel engine fuel injection optimization,”
IEEE/ASME Transactions on Mechatronics
,
vol. 23
,
No. 2
,
2018
, pp.
936
946
.
13.
Tan
,
Q.
,
Tan
,
P Divekar, Y.
Chen
,
X.
Zheng
,
M.
“Online calibration of combustion phase in a diesel engine,”
Control Theory and Technology,
vol. 15
,
No. 2
,
2017
, pp.
129
137.
14.
Zhang
,
C.
,
Ordonez
,
R.
Extremum-seeking Control and Applications
.
Springer
London
,
2012.
15.
Ariyur
,
K.B.
Krstic
,
M.
Real-time optimization by extremum seeking control
.
New Jersey:
Wiley
,
2003.
16.
Manzie
,
C.
,
Moase
,
W.
Shekhar
,
R.
Mohammadi
,
A.
Nesic
,
D.
Tan
,
Y.
,
Optimization and optimal control in automotive systems.
Springer International Publishing
,
2014.
17.
Divekar
,
P.
,
Tan
,
Q.
Chen
,
X.
Zheng
,
M.
Tan
,
Y.
“Diesel engine fuel injection control using a model-guided extremum-seeking method,”
ASME Dynamic Systems and Control Conference, Columbus, OH,
2015
, pp.
V001T11A006.
18.
Divekar
,
P.
,
Tan
,
Q.
,
Tan
,
Y.
Chen
,
X.
Zheng
,
M.
“Nonlinear model reference observer design for feedback control of a low temperature combustion diesel engine,”
American Control Conference, Chicago, IL,
2015
, pp.
13
18.
19.
Tan
,
Q.
,
Divekar
,
P.
Tan
,
Y.
,
Chen
,
X.
Zheng
,
M.
“Engine model calibration using extremum seeking,”
IFAC-PapersOnLine,
Vol. 49
,
No. 11
,
2016,
pp.
730
735.
20.
Robert Bosch GmbH, Diesel engine management – Systems and components. John Wiley & Sons Ltd., 2005.
21.
Kihas
,
D.
,
Uchanski
,
M.
“Engine-Out NOx models for on-ECU implementation: A brief overview,"
SAE Technical Paper, 2015-01-1638,
2015.
You do not currently have access to this content.