Abstract

This paper presents a general equivalent approach to solve the stiffness modeling or load-deformation problem of non-redundant parallel mechanisms. Based on the principal axes decomposition of structure compliance matrices, an equivalent six-degrees-of-freedom (6-DOFs) serial mechanism is established to approximate the load-deformation behavior of each flexible link in the mechanism. Hence, each limb of the parallel mechanism can be equivalent to a serial redundant rigid body mechanism with passive elastic joints, and the load-deformation problem can be transformed to the equilibrium configuration calculation of the equivalent mechanism. The main advantage of the proposed method is that the robotic kinematics and statics, rather than the elastic mechanics, can be directly adopted to solve the equilibrium configuration of the parallel mechanism under external load. Besides, a closed form solution of the corresponding deformation can be obtained, which can be solved by the gradient-based searching algorithm. Therefore, the final deformation will no longer be linear to the external load, which makes this method more accurate and more suitable for the deformation prediction and compensation in real industrial working conditions. In order to verify the effectiveness and correctness of this method, a 3PRRU parallel manipulator will be introduced as an example, to compare the load-deformation results with the finite element analysis (FEA) simulation and matrix calculation methods, so the nonlinearity feature can be shown in an intuitive manner.

References

1.
Chanal
,
H.
,
Duc
,
E.
, and
Ray
,
P.
,
2006
, “
A Study of the Impact of Machine Tool Structure on Machining Processes
,”
Int. J. Mach. Tools Manuf.
,
46
(
2
), pp.
98
106
.
2.
Liu
,
X.-J.
, and
Wang
,
J
,
2014
, “Classification of Parallel Mechanisms,”
Parallel Kinematics: Type, Kinematics, and Optimal Design
,
Springer
,
Berlin
, pp.
3
29
.
3.
Klimchik
,
A.
,
Pashkevich
,
A.
, and
Chablat
,
D.
,
2013
, “
CAD-Based Approach for Identification of Elasto-static Parameters of Robotic Manipulators
,”
Finite Elem. Anal. Des.
,
75
, pp.
19
30
.
4.
Piras
,
G.
,
Cleghorn
,
W. L.
, and
Mills
,
J. K.
,
2005
, “
Dynamic Finite-Element Analysis of a Planar High-Speed, High-Precision Parallel Manipulator With Flexible Links
,”
Mech. Mach. Theory
,
40
(
7
), pp.
849
862
.
5.
El-Khasawneh
,
B. S.
, and
Ferreira
,
P. M.
,
1999
, “
Computation of Stiffness and Stiffness Bounds for Parallel Link Manipulators
,”
Int. J. Mach. Tools Manuf.
,
39
(
2
), pp.
321
342
.
6.
Mekaouche
,
A.
,
Chapelle
,
F.
, and
Balandraud
,
X.
,
2015
, “
FEM-Based Generation of Stiffness Maps
,”
IEEE Trans. Rob.
,
31
(
1
), pp.
217
222
.
7.
Soares
,
G. D. L.
,
Carvalho
,
J. C. M.
, and
Gonçalves
,
R. S.
,
2016
, “
Stiffness Analysis of Multibody Systems Using Matrix Structural Analysis—MSA
,”
Robotica
,
34
(
10
), pp.
2368
2385
.
8.
Deblaise
,
D.
,
Hernot
,
X.
, and
Maurine
,
P.
,
2006
, “
A Systematic Analytical Method for PKM Stiffness Matrix Calculation
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Orlando, FL
,
May 15–19
, pp.
4213
4219
.
9.
Huang
,
T.
,
Zhao
,
X.
, and
Whitehouse
,
D. J.
,
2002
, “
Stiffness Estimation of a Tripod-Based Parallel Kinematic Machine
,”
IEEE Trans. Rob. Autom.
,
18
(
1
), pp.
50
58
.
10.
Martin
,
H. C.
,
1966
,
Introduction to Matrix Methods of Structural Analysis
,
McGraw-Hill Book Co.
,
New York
.
11.
Ghali
,
A.
, and
Neville
,
A. M.
,
1997
,
Structural Analysis: A Unified Classical and Matrix Approach
,
CRC Press
,
London
.
12.
Klimchik
,
A.
,
Chablat
,
D.
, and
Pashkevich
,
A.
,
2018
, “
Advancement of MSA–Technique for Stiffness Modeling of Serial and Parallel Robotic Manipulators
,”
ROMANSY 22—Robot Design, Dynamics and Control
,
Rennes, France
,
June 25–28
, Springer, pp.
355
362
.
13.
Chai
,
X.
,
Ye
,
W.
,
Li
,
Q.
, and
Xu
,
L. J. M.
,
2022
, “
Elastostatic Stiffness Modeling and Performance Evaluation of a 2UPR–2PRU Redundantly Actuated Parallel Manipulator
,”
Machines
,
10
(
12
), p.
1219
.
14.
Ye
,
N.
, and
Hu
,
B.
,
2022
, “
Stiffness Modeling of Some 4-DOF Over-Constrained Parallel Manipulators With Various Constrained Wrench Forms
,”
Mech. Mach. Theory
,
172
, p.
104821
.
15.
Li
,
Q.
,
Xu
,
L.
,
Chen
,
Q.
, and
Chai
,
X.
,
2019
, “
Analytical Elastostatic Stiffness Modeling of Overconstrained Parallel Manipulators Using Geometric Algebra and Strain Energy
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031007
.
16.
Yang
,
C.
,
Li
,
Q.
, and
Chen
,
Q.
,
2020
, “
Decoupled Elastostatic Stiffness Modeling of Parallel Manipulators Based on the Rigidity Principle
,”
Mech. Mach. Theory
,
145
, p.
103718
.
17.
Klimchik
,
A.
,
Pashkevich
,
A.
, and
Chablat
,
D.
,
2019
, “
Fundamentals of Manipulator Stiffness Modeling Using Matrix Structural Analysis
,”
Mech. Mach. Theory
,
133
, pp.
365
394
.
18.
Herrero
,
S.
,
Pinto
,
C.
,
Diez
,
M.
, and
Corral
,
J.
,
2019
, “
Analytical Procedure Based on the Matrix Structural Method for the Analysis of the Stiffness of the 2PRU–1PRS Parallel Manipulator
,”
Robotica
,
37
(
8
), pp.
1401
1414
.
19.
Xu
,
Y.
,
Yang
,
F.
,
Xu
,
Z.
,
Yao
,
J.
,
Zhou
,
Y.
, and
Zhao
,
Y.
,
2021
, “
TriRhino: A Five-Degrees-of-Freedom of Hybrid Serial–Parallel Manipulator With All Rotating Axes Being Continuous: Stiffness Analysis and Experiments
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
025002
.
20.
Pashkevich
,
A.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2009
, “
Stiffness Analysis of Overconstrained Parallel Manipulators
,”
Mech. Mach. Theory
,
44
(
5
), pp.
966
982
.
21.
Zhang
,
D.
, and
Gosselin
,
C. M.
,
2002
, “
Kinetostatic Modeling of Parallel Mechanisms With a Passive Constraining Leg and Revolute Actuators
,”
Mech. Mach. Theory
,
37
(
6
), pp.
599
617
.
22.
Gosselin
,
C. M.
, and
Zhang
,
D.
,
2002
, “
Stiffness Analysis of Parallel Mechanisms Using a Lumped Model
,”
Int. J. Rob. Autom.
,
17
(
1
), pp.
17
27
.
23.
Salisbury
,
J. K.
,
1980
, “
Active Stiffness Control of a Manipulator in Cartesian Coordinates
,”
Proceedings of the IEEE Conference on Decision and Control
,
Albuquerque, NM
,
Dec. 10–12
, Vol. 1, pp.
95
100
.
24.
Gosselin
,
C.
,
1990
, “
Stiffness Mapping for Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
377
382
.
25.
Ceccarelli
,
M.
, and
Carbone
,
G.
,
2002
, “
A Stiffness Analysis for CaPaMan (Cassino Parallel Manipulator)
,”
Mech. Mach. Theory
,
37
(
5
), pp.
427
439
.
26.
Pashkevich
,
A.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2008
, “
Stiffness Analysis of 3-d.o.f. Overconstrained Translational Parallel Manipulators
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
1562
1567
.
27.
Klimchik
,
A.
,
Pashkevich
,
A.
,
Caro
,
S.
, and
Chablat
,
D.
,
2012
, “
Stiffness Matrix of Manipulators With Passive Joints: Computational Aspects
,”
IEEE Trans. Rob.
,
28
(
4
), pp.
955
958
.
28.
Pashkevich
,
A.
,
Klimchik
,
A.
, and
Chablat
,
D.
,
2011
, “
Enhanced Stiffness Modeling of Manipulators With Passive Joints
,”
Mech. Mach. Theory
,
46
(
5
), pp.
662
679
.
29.
Klimchik
,
A.
,
Chablat
,
D.
, and
Pashkevich
,
A.
,
2014
, “
Stiffness Modeling for Perfect and Non-Perfect Parallel Manipulators Under Internal and External Loadings
,”
Mech. Mach. Theory
,
79
, pp.
1
28
.
30.
Klimchik
,
A.
, and
Pashkevich
,
A.
,
2017
, “
Serial vs. Quasi-Serial Manipulators: Comparison Analysis of Elasto-static Behaviors
,”
Mech. Mach. Theory
,
107
, pp.
46
70
.
31.
Hoevenaars
,
A. G.
,
Lambert
,
P.
, and
Herder
,
J. L.
,
2015
, “
Jacobian-Based Stiffness Analysis Method for Parallel Manipulators With Non-Redundant Legs
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
230
(
3
), pp.
341
352
.
32.
Zhang
,
J.
,
Zhao
,
Y.
, and
Jin
,
Y.
,
2016
, “
Kinetostatic-Model-Based Stiffness Analysis of Exechon PKM
,”
Rob. Comput. Integr. Manuf.
,
37
, pp.
208
220
.
33.
Griffis
,
M.
, and
Duffy
,
J.
,
1993
, “
Global Stiffness Modeling of a Class of Simple Compliant Couplings
,”
Mech. Mach. Theory
,
28
(
2
), pp.
207
224
.
34.
Ciblak
,
N.
, and
Lipkin
,
H.
,
1994
, “
Asymmetric Cartesian Stiffness for the Modelling of Compliant Robotic Systems
,”
Proceedings of the American Society of Mechanical Engineers, Design Engineering Division (Publication) DE
,
Minneapolis, MN
,
Sept. 11–14
, pp.
197
204
.
35.
Howard
,
S.
,
Zefran
,
M.
, and
Kumar
,
V.
,
1998
, “
On the 6 × 6 Cartesian Stiffness Matrix for Three-Dimensional Motions
,”
Mech. Mach. Theory
,
33
(
4
), pp.
389
408
.
36.
Žefran
,
M.
, and
Kumar
,
V.
,
2002
, “
A Geometrical Approach to the Study of the Cartesian Stiffness Matrix
,”
ASME J. Mech. Des.
,
124
(
1
), pp.
30
38
.
37.
Chen
,
S. F.
, and
Kao
,
I.
,
2000
, “
Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers
,”
Int. J. Rob. Res.
,
19
(
9
), pp.
835
847
.
38.
Selig
,
J. M.
,
2000
, “
The Spatial Stiffness Matrix From Simple Stretched Springs
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)
,
San Francisco, CA
,
Apr. 24–28
, Vol. 3314, pp.
3314
3319
.
39.
Kövecses
,
J.
, and
Angeles
,
J.
,
2007
, “
The Stiffness Matrix in Elastically Articulated Rigid-Body Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
169
184
.
40.
Chen
,
G.
,
Wang
,
H.
,
Lin
,
Z.
, and
Lai
,
X.
,
2015
, “
The Principal Axes Decomposition of Spatial Stiffness Matrices
,”
IEEE Trans. Rob.
,
31
(
1
), pp.
191
207
.
41.
Chen
,
G.
,
Zhang
,
Z.
, and
Wang
,
H.
,
2018
, “
A General Approach to the Large Deflection Problems of Spatial Flexible Rods Using Principal Axes Decomposition of Compliance Matrices
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031012
.
42.
Huang
,
T.
,
Liu
,
H. T.
, and
Chetwynd
,
D. G.
,
2011
, “
Generalized Jacobian Analysis of Lower Mobility Manipulators
,”
Mech. Mach. Theory
,
46
(
6
), pp.
831
844
.
43.
Liu
,
H.
,
Huang
,
T.
,
Chetwynd
,
D. G.
, and
Kecskeméthy
,
A.
,
2017
, “
Stiffness Modeling of Parallel Mechanisms at Limb and Joint/Link Levels
,”
IEEE Trans. Rob.
,
33
(
3
), pp.
734
741
.
44.
Chen
,
G.
,
Wang
,
H.
,
Lin
,
Z.
, and
Lai
,
X.
,
2018
, “
Identification of Canonical Basis of Screw Systems Using General-Special Decomposition
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
034501
.
45.
Chen
,
G.
,
Yu
,
W.
,
Chen
,
C.
,
Wang
,
H.
, and
Lin
,
Z.
,
2017
, “
A New Approach for the Identification of Reciprocal Screw Systems and Its Application to the Kinematics Analysis of Limited-DOF Parallel Manipulators
,”
Mech. Mach. Theory
,
118
, pp.
194
218
.
46.
Ball
,
R. S.
,
1998
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
.
47.
Selig
,
J. M.
,
2004
,
Geometric Fundamentals of Robotics
,
Springer
,
New York
.
48.
Li
,
Z.
,
Sastry
,
S. S.
, and
Murray
,
R.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
49.
Li
,
Q.
, and
Hervé
,
J.
,
2014
, “
Type Synthesis of 3-DOF RPR-Equivalent Parallel Mechanisms
,”
IEEE Trans. Rob.
,
30
(
6
), pp.
1333
1343
.
50.
Chen
,
Q.
,
Chen
,
Z.
,
Chai
,
X.
, and
Li
,
Q.
,
2013
, “
Kinematic Analysis of a 3-Axis Parallel Manipulator: The P3
,”
Adv. Mech. Eng.
,
5
, p.
589156
.
51.
Chen
,
G.
,
Yu
,
W.
,
Li
,
Q.
, and
Wang
,
H.
,
2017
, “
Dynamic Modeling and Performance Analysis of the 3-PRRU 1T2R Parallel Manipulator Without Parasitic Motion
,”
Nonlinear Dyn.
,
90
(
1
), pp.
339
353
.
You do not currently have access to this content.