Abstract

Applications for additive manufacturing (AM) continue to increase as more industries adopt the technology within their product development processes. There is a growing demand for designers to acquire and hone their design for AM (DfAM) intuition and generate innovative solutions with AM. Resources that promote DfAM intuition, however, historically default to physical or digitally non-immersive modalities. Immersive virtual reality (VR) naturally supports 3D spatial perception and reasoning, suggesting its intuitive role in evaluating geometrically complex designs and fostering DfAM intuition. However, the effects of immersion on DfAM evaluations are not well-established in the literature. This study contributes to this gap in the literature by examining DfAM evaluations for a variety of designs across modalities using varying degrees of immersion. Specifically, it observes the effects on the outcomes of the DfAM evaluation, the effort required of evaluators, and their engagement with the designs. Findings indicate that the outcomes from DfAM evaluations in immersive and non-immersive modalities are similar without statistically observable differences in the cognitive load experienced during the evaluations. Active engagement with the designs, however, is observed to be significantly different between immersive and non-immersive modalities. By contrast, passive engagement remains similar across the modalities. These findings have interesting implications on how organizations train designers in DfAM, as well as on the role of immersive modalities in design processes. Organizations can provide DfAM resources across different levels of immersion, enabling designers to customize how they acquire DfAM intuition and solve complex engineering problems.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Gibson
,
I.
,
Gao
,
Z.
, and
Campbell
,
I.
,
2004
, “
A Comparative Study of Virtual Prototyping and Physical Prototyping
,”
Int. J. Manuf. Technol. Manage.
,
6
(
6
), p.
503
.
2.
Zorriassatine
,
F.
,
Wykes
,
C.
,
Parkin
,
R.
, and
Gindy
,
N.
,
2003
, “
A Survey of Virtual Prototyping Techniques for Mechanical Product Development
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
217
(
4
), pp.
513
530
.
3.
Ford
,
S.
, and
Despeisse
,
M.
,
2016
, “
Additive Manufacturing and Sustainability: An Exploratory Study of the Advantages and Challenges
,”
J. Cleaner Prod.
,
137
, pp.
1573
1587
.
4.
Ford
,
S.
, and
Minshall
,
T.
,
2019
, “
Invited Review Article: Where and How 3D Printing Is Used in Teaching and Education
,”
Addit. Manuf.
,
25
, pp.
131
150
.
5.
Alfaify
,
A.
,
Saleh
,
M.
,
Abdullah
,
F. M.
, and
Al-Ahmari
,
A. M.
,
2020
, “
Design for Additive Manufacturing: A Systematic Review
,”
Sustainability
,
12
(
19
), p.
7936
.
6.
Pei
,
E.
,
Monzón
,
M.
, and
Bernard
,
A.
,
2019
,
Additive Manufacturing—Developments in Training and Education
,
Springer International Publishing
,
Cham
.
7.
Prabhu
,
R.
,
Bracken
,
J.
,
Armstrong
,
C. B.
,
Jablokow
,
K.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Additive Creativity: Investigating the Use of Design for Additive Manufacturing to Encourage Creativity in the Engineering Design Industry
,”
Int. J. Des. Creat. Innov.
,
8
(
4
), pp.
198
222
.
8.
Prabhu
,
R.
,
Simpson
,
T. W.
,
Miller
,
S. R.
,
Cutler
,
S. L.
, and
Meisel
,
N. A.
,
2021
, “
Teaching Designing for Additive Manufacturing: Formulating Educational Interventions That Encourage Design Creativity
,”
3D Print. Addit. Manuf.
,
10
(
2
), pp.
356
372
.
9.
Simpson
,
T. W.
,
Williams
,
C. B.
, and
Hripko
,
M.
,
2017
, “
Preparing Industry for Additive Manufacturing and Its Applications: Summary & Recommendations From a National Science Foundation Workshop
,”
Addit. Manuf.
,
13
, pp.
166
178
.
10.
Meisel
,
N.
, and
Williams
,
C.
,
2015
, “
An Investigation of Key Design for Additive Manufacturing Constraints in Multimaterial Three-Dimensional Printing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111406
.
11.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
, et al
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.
,
65
(
2
), pp.
737
760
.
12.
Booth
,
J. W.
,
Alperovich
,
J.
,
Chawla
,
P.
,
Ma
,
J.
,
Reid
,
T. N.
, and
Ramani
,
K.
,
2017
, “
The Design for Additive Manufacturing Worksheet
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100904
.
13.
Bracken
,
J.
,
Pomorski
,
T.
,
Armstrong
,
C.
,
Prabhu
,
R.
,
Simpson
,
T. W.
,
Jablokow
,
K.
,
Cleary
,
W.
, and
Meisel
,
N. A.
,
2020
, “
Design for Metal Powder Bed Fusion: The Geometry for Additive Part Selection (GAPS) Worksheet
,”
Addit. Manuf.
,
35
, p.
101163
.
14.
Noh
,
H.
,
Park
,
K.
,
Park
,
K.
, and
Okudan Kremer
,
G. E.
,
2021
, “
Development of a Design for Additive Manufacturing Worksheet for Medical Casts
,”
Proceedings of the Volume 5: 26th Design for Manufacturing and the Life Cycle Conference (DFMLC), American Society of Mechanical Engineers
,
Virtual, Online
,
Aug. 17
.
15.
Gross
,
J.
,
Park
,
K.
, and
Kremer
,
G. E. O.
,
2018
, “
Design for Additive Manufacturing Inspired by TRIZ
,”
Proceedings of the Volume 4: 23rd Design for Manufacturing and the Life Cycle Conference; 12th International Conference on Micro- and Nanosystems, American Society of Mechanical Engineers
,
Quebec City, PQ, Canada
,
Aug. 26
.
16.
Shi
,
Y.
,
Zhang
,
Y.
,
Baek
,
S.
,
De Backer
,
W.
, and
Harik
,
R.
,
2018
, “
Manufacturability Analysis for Additive Manufacturing Using a Novel Feature Recognition Technique
,”
Comput.-Aided Des. Appl.
,
15
(
6
), pp.
941
952
.
17.
Budinoff
,
H. D.
, and
McMains
,
S.
,
2021
, “
Will It Print: A Manufacturability Toolbox for 3D Printing
,”
Int. J. Interact. Des. Manuf.
,
15
(
4
), pp.
613
630
.
18.
Zhang
,
Y.
,
Harik
,
R.
,
Fadel
,
G.
, and
Bernard
,
A.
,
2019
, “
A Statistical Method for Build Orientation Determination in Additive Manufacturing
,”
Rapid Prototyp. J.
,
25
(
1
), pp.
187
207
.
19.
Cayley
,
A.
,
Mathur
,
J.
, and
Meisel
,
N. A.
,
2024
, “
Creation and Assessment of a Novel Design Evaluation Tool for Additive Manufacturing
,”
ASME J. Mech. Des.
,
146
(
1
), p.
012001
.
20.
Blösch-Paidosh
,
A.
, and
Shea
,
K.
,
2019
, “
Design Heuristics for Additive Manufacturing Validated Through a User Study1
,”
ASME J. Mech. Des.
,
141
(
4
), p.
041101
.
21.
Lauff
,
C. A.
,
Perez
,
K. B.
,
Camburn
,
B. A.
, and
Wood
,
K. L.
,
2019
, “
Design Principle Cards: Toolset to Support Innovations With Additive Manufacturing
,”
Proceedings of the Volume 4: 24th Design for Manufacturing and the Life Cycle Conference; 13th International Conference on Micro- and Nanosystems
,
Anaheim, CA
,
Aug. 18
.
22.
Berni
,
A.
, and
Borgianni
,
Y.
,
2020
, “
Applications of Virtual Reality in Engineering and Product Design: Why, What, How, When and Where
,”
Electronics
,
9
(
7
), p.
1064
.
23.
Horvat
,
N.
,
Škec
,
S.
,
Martinec
,
T.
,
Lukačević
,
F.
, and
Perišić
,
M. M.
,
2019
, “
Comparing Virtual Reality and Desktop Interface for Reviewing 3D CAD Models
,”
Proceedings of the Design Society: International Conference on Engineering Design
, Vol.
1
, No. (
1
), pp.
1923
1932
.
24.
Feeman
,
S. M.
,
Wright
,
L. B.
, and
Salmon
,
J. L.
,
2018
, “
Exploration and Evaluation of CAD Modeling in Virtual Reality
,”
Comput.-Aided Des. Appl.
,
15
(
6
), pp.
892
904
.
25.
Wolfartsberger
,
J.
,
2019
, “
Analyzing the Potential of Virtual Reality for Engineering Design Review
,”
Autom. Constr.
,
104
, pp.
27
37
.
26.
Guo
,
Z.
,
Zhou
,
D.
,
Chen
,
J.
,
Geng
,
J.
,
Lv
,
C.
, and
Zeng
,
S.
,
2018
, “
Using Virtual Reality to Support the Product's Maintainability Design: Immersive Maintainability Verification and Evaluation System
,”
Comput. Ind.
,
101
, pp.
41
50
.
27.
Fillingim
,
K. B.
,
Nwaeri
,
R. O.
,
Paredis
,
C. J. J.
,
Rosen
,
D.
, and
Fu
,
K.
,
2020
, “
Examining the Effect of Design for Additive Manufacturing Rule Presentation on Part Redesign Quality
,”
J. Eng. Des.
,
31
(
8–9
), pp.
427
460
.
28.
Mathur
,
J.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2022
, “
Identifying the Effects of Immersion on Design for Additive Manufacturing Evaluation of Designs of Varying Manufacturability
,”
Proceedings of the Volume 5: 27th Design for Manufacturing and the Life Cycle Conference (DFMLC)
,
St. Louis, MO
,
Aug. 14
.
29.
Radianti
,
J.
,
Majchrzak
,
T. A.
,
Fromm
,
J.
, and
Wohlgenannt
,
I.
,
2020
, “
A Systematic Review of Immersive Virtual Reality Applications for Higher Education: Design Elements, Lessons Learned, and Research Agenda
,”
Comput. Educ.
,
147
, p.
103778
.
30.
Jensen
,
L.
, and
Konradsen
,
F.
,
2018
, “
A Review of the Use of Virtual Reality Head-Mounted Displays in Education and Training
,”
Educ. Inf. Technol.
,
23
(
4
), pp.
1515
1529
.
31.
Slater
,
M.
, and
Wilbur
,
S.
,
1997
, “
A Framework for Immersive Virtual Environments (FIVE): Speculations on the Role of Presence in Virtual Environments
,”
Presence: Teleoperators Virtual Environ.
,
6
(
6
), pp.
603
616
.
32.
Vergara
,
D.
,
Extremera
,
J.
,
Rubio
,
M. P.
, and
Dávila
,
L. P.
,
2019
, “
Meaningful Learning Through Virtual Reality Learning Environments: A Case Study in Materials Engineering
,”
Appl. Sci.
,
9
(
21
), p.
4625
.
33.
Violante
,
M. G.
,
VezzetÝ
,
E.
, and
Piazzolla
,
P.
,
2019
, “
How to Design a Virtual Reality Experience That Impacts the Consumer Engagement: The Case of the Virtual Supermarket
,”
Int. J. Interact. Des. Manuf.
,
13
(
1
), pp.
243
262
.
34.
Richir
,
S.
,
Fuchs
,
P.
,
Lourdeaux
,
D.
,
Millet
,
D.
,
Buche
,
C.
, and
Querrec
,
R.
,
2015
, “
How to Design Compelling Virtual Reality or Augmented Reality Experience?
,”
Int. J. Virtual Real.
,
15
(
1
), pp.
35
47
.
35.
Li
,
K.
,
Hall
,
M.
,
Bermell-Garcia
,
P.
,
Alcock
,
J.
,
Tiwari
,
A.
, and
González-Franco
,
M.
,
2017
, “
Measuring the Learning Effectiveness of Serious Gaming for Training of Complex Manufacturing Tasks
,”
Simul. Gaming
,
48
(
6
), pp.
770
790
.
36.
Perini
,
S.
,
LuglietÝ
,
R.
,
Margoudi
,
M.
,
Oliveira
,
M.
, and
Taisch
,
M.
,
2018
, “
Learning and Motivational Effects of Digital Game-Based Learning (DGBL) for Manufacturing Education –The Life Cycle Assessment (LCA) Game
,”
Comput. Ind.
,
102
, pp.
40
49
.
37.
Chang
,
C.-C.
,
Warden
,
C. A.
,
Liang
,
C.
, and
Lin
,
G.-Y.
,
2018
, “
Effects of Digital Game-Based Learning on Achievement, Flow and Overall Cognitive Load
,”
Australas. J. Educ. Technol.
,
34
(
4
), pp.
155
167
.
38.
Despeisse
,
M.
,
2018
, “
Games and Simulations in Industrial Engineering Education: A Review of the Cognitive and Affective Learning Outcomes
,”
Proceedings of the 2018 Winter Simulation Conference (WSC)
,
Gothenburg, Sweden
,
Dec. 9
.
39.
Tseng
,
T.-L.
,
Pan
,
R.
,
Zheng
,
J.
,
Awalt
,
C.
,
Gonzalez
,
M.
, and
Medina
,
F.
,
2011
, “
Digital Additive Manufacturing for Engineering Education: A Virtual Rapid Prototyping Simulator Approach
,”
Proceedings of the 2011 ASEE Annual Conference & Exposition Proceedings, ASEE Conferences
,
Vancouver, BC, Canada
,
June 26
.
40.
Deshpande
,
A. A.
, and
Huang
,
S. H.
,
2011
, “
Simulation Games in Engineering Education: A State-of-the-Art Review
,”
Comput. Appl. Eng. Educ.
,
19
(
3
), pp.
399
410
.
41.
Ouyang
,
S.-G.
,
Wang
,
G.
,
Yao
,
J.-Y.
,
Zhu
,
G.-H.-W.
,
Liu
,
Z.-Y.
, and
Feng
,
C.
,
2018
, “
A Unity3D-Based Interactive Three-Dimensional Virtual Practice Platform for Chemical Engineering
,”
Comput. Appl. Eng. Educ.
,
26
(
1
), pp.
91
100
.
42.
Vlachopoulos
,
D.
, and
Makri
,
A.
,
2017
, “
The Effect of Games and Simulations on Higher Education: A Systematic Literature Review
,”
Int. J. Educ. Technol. High. Educ.
,
14
(
1
), pp.
22
.
43.
Berg
,
L. P.
, and
Vance
,
J. M.
,
2017
, “
Industry Use of Virtual Reality in Product Design and Manufacturing: A Survey
,”
Virtual Real.
,
21
(
1
), pp.
1
17
.
44.
Houzangbe
,
S.
,
Masson
,
D. H.
,
Fleury
,
S.
,
Gómez Jáuregui
,
D. A.
,
Legardeur
,
J.
,
Richir
,
S.
, and
Couture
,
N.
,
2022
, “
Is Virtual Reality the Solution? A Comparison Between 3D and 2D Creative Sketching Tools in the Early Design Process
,”
Front. Virtual Real.
,
3
, pp.
958223
.
45.
Yang
,
E. K.
, and
Lee
,
J. H.
,
2020
, “
Cognitive Impact of Virtual Reality Sketching on Designers' Concept Generation
,”
Digital Creat.
,
31
(
2
), pp.
82
97
.
46.
Meyer
,
O. A.
,
Omdahl
,
M. K.
, and
Makransky
,
G.
,
2019
, “
Investigating the Effect of Pre-Training When Learning Through Immersive Virtual Reality and Video: A Media and Methods Experiment
,”
Comput. Educ.
,
140
, pp.
103603
.
47.
Lovreglio
,
R.
,
Duan
,
X.
,
Rahouti
,
A.
,
Phipps
,
R.
, and
Nilsson
,
D.
,
2021
, “
Comparing the Effectiveness of Fire Extinguisher Virtual Reality and Video Training
,”
Virtual Real.
,
25
(
1
), pp.
133
145
.
48.
Krokos
,
E.
,
Plaisant
,
C.
, and
Varshney
,
A.
,
2019
, “
Virtual Memory Palaces: Immersion Aids Recall
,”
Virtual Real.
,
23
(
1
), pp.
1
15
.
49.
Hamilton
,
D.
,
McKechnie
,
J.
,
Edgerton
,
E.
, and
Wilson
,
C.
,
2021
, “
Immersive Virtual Reality as a Pedagogical Tool in Education: A Systematic Literature Review of Quantitative Learning Outcomes and Experimental Design
,”
J. Comput. Educ.
,
8
(
1
), pp.
1
32
.
50.
Grassini
,
S.
,
Laumann
,
K.
, and
Rasmussen Skogstad
,
M.
,
2020
, “
The Use of Virtual Reality Alone Does Not Promote Training Performance (But Sense of Presence Does)
,”
Front. Psychol.
,
11
, pp.
1743
.
51.
Markowitz
,
D. M.
,
Laha
,
R.
,
Perone
,
B. P.
,
Pea
,
R. D.
, and
Bailenson
,
J. N.
,
2018
, “
Immersive Virtual Reality Field Trips Facilitate Learning About Climate Change
,”
Front. Psychol.
,
9
, pp.
2364
.
52.
Makransky
,
G.
,
Andreasen
,
N. K.
,
Baceviciute
,
S.
, and
Mayer
,
R. E.
,
2021
, “
Immersive Virtual Reality Increases Liking But Not Learning With a Science Simulation and Generative Learning Strategies Promote Learning in Immersive Virtual Reality
,”
J. Educ. Psychol.
,
113
(
4
), pp.
719
735
.
53.
Klippel
,
A.
,
Zhao
,
J.
,
Oprean
,
D.
,
Wallgrün
,
J. O.
,
Stubbs
,
C.
,
La Femina
,
P.
, and
Jackson
,
K. L.
,
2020
, “
The Value of Being There: Toward a Science of Immersive Virtual Field Trips
,”
Virtual Real.
,
24
(
4
), pp.
753
770
.
54.
Huang
,
W.
, and
Roscoe
,
R. D.
,
2021
, “
Head-Mounted Display-Based Virtual Reality Systems in Engineering Education: A Review of Recent Research
,”
Comput. Appl. Eng. Educ.
,
29
(
5
), pp.
1420
1435
.
55.
Pletz
,
C.
, and
Zinn
,
B.
,
2020
, “
Evaluation of an Immersive Virtual Learning Environment for Operator Training in Mechanical and Plant Engineering Using Video Analysis
,”
Br. J. Educ. Technol.
,
51
(
6
), pp.
2159
2179
.
56.
Soliman
,
M.
,
Pesyridis
,
A.
,
Dalaymani-Zad
,
D.
,
Gronfula
,
M.
, and
Kourmpetis
,
M.
,
2021
, “
The Application of Virtual Reality in Engineering Education
,”
Appl. Sci.
,
11
(
6
), pp.
2879
.
57.
Parong
,
J.
, and
Mayer
,
R. E.
,
2018
, “
Learning Science in Immersive Virtual Reality
,”
J. Educ. Psychol.
,
110
(
6
), pp.
785
797
.
58.
Starkey
,
E. M.
,
McKay
,
A. S.
,
Hunter
,
S. T.
, and
Miller
,
S. R.
,
2018
, “
Piecing Together Product Dissection: How Dissection Conditions Impact Student Conceptual Understanding and Cognitive Load
,”
ASME J. Mech. Des.
,
140
(
5
), pp.
052001
.
59.
Wismer
,
A.
,
Reinerman-Jones
,
L.
,
Teo
,
G.
,
Willis
,
S.
,
McCracken
,
K.
, and
Hackett
,
M.
,
2018
, “A Workload Comparison During Anatomical Training With a Physical or Virtual Model,”
Augmented Cognition: Users and Contexts
,
D. D.
Schmorrow
, and
C. M.
Fidopiastis
, eds.,
Springer International Publishing
,
Cham
, pp.
240
252
.
60.
Armougum
,
A.
,
Orriols
,
E.
,
Gaston-Bellegarde
,
A.
,
Marle
,
C. J.-L.
, and
Piolino
,
P.
,
2019
, “
Virtual Reality: A New Method to Investigate Cognitive Load During Navigation
,”
J. Environ. Psychol.
,
65
, pp.
101338
.
61.
Frederiksen
,
J. G.
,
Sørensen
,
S. M. D.
,
Konge
,
L.
,
Svendsen
,
M. B. S.
,
Nobel-Jørgensen
,
M.
,
Bjerrum
,
F.
, and
Andersen
,
S. A. W.
,
2020
, “
Cognitive Load and Performance in Immersive Virtual Reality Versus Conventional Virtual Reality Simulation Training of Laparoscopic Surgery: A Randomized Trial
,”
Surg. Endosc.
,
34
(
3
), pp.
1244
1252
.
62.
Buxton
,
W.
,
2007
,
Sketching User Experiences: GetÝng the Design Right and the Right Design
,
Elsevier/Morgan Kaufmann
,
Amsterdam, Boston, MA
.
63.
Sweller
,
J.
,
van Merriënboer
,
J. J. G.
, and
Paas
,
F.
,
2019
, “
Cognitive Architecture and Instructional Design: 20 Years Later
,”
Educ. Psychol. Rev.
,
31
(
2
), pp.
261
292
.
64.
Barnawal
,
P.
,
Dorneich
,
M. C.
,
Frank
,
M. C.
, and
Peters
,
F.
,
2017
, “
Evaluation of Design Feedback Modality in Design for Manufacturability
,”
ASME J. Mech. Des.
,
139
(
9
), pp.
094503
.
65.
Boschma
,
R.
,
2005
, “
Proximity and Innovation: A Critical Assessment
,”
Reg. Stud.
,
39
(
1
), pp.
61
74
.
66.
Koskinen
,
K. U.
, and
Vanharanta
,
H.
,
2002
, “
The Role of Tacit Knowledge in Innovation Processes of Small Technology Companies
,”
Int. J. Prod. Econ.
,
80
(
1
), pp.
57
64
.
67.
Gibson
,
I.
,
Rosen
,
D.
,
Stucker
,
B.
, and
Khorasani
,
M.
,
2021
,
Additive Manufacturing Technologies
,
Springer International Publishing
,
Cham
.
68.
Jiang
,
R.
,
Kleer
,
R.
, and
Piller
,
F. T.
,
2017
, “
Predicting the Future of Additive Manufacturing: A Delphi Study on Economic and Societal Implications of 3D Printing for 2030
,”
Technol. Forecast. Soc. Change
,
117
, pp.
84
97
.
69.
Caviggioli
,
F.
, and
Ughetto
,
E.
,
2019
, “
A Bibliometric Analysis of the Research Dealing With the Impact of Additive Manufacturing on Industry, Business and Society
,”
Int. J. Prod. Econ.
,
208
, pp.
254
268
.
70.
Kumke
,
M.
,
Watschke
,
H.
,
Hartogh
,
P.
,
Bavendiek
,
A.-K.
, and
Vietor
,
T.
,
2018
, “
Methods and Tools for Identifying and Leveraging Additive Manufacturing Design Potentials
,”
Int. J. Interact. Des. Manuf.
,
12
(
2
), pp.
481
493
.
71.
Abidi
,
M. H.
,
Al-Ahmari
,
A.
,
Ahmad
,
A.
,
Ameen
,
W.
, and
Alkhalefah
,
H.
,
2019
, “
Assessment of Virtual Reality-Based Manufacturing Assembly Training System
,”
Int. J. Adv. Manuf. Technol.
,
105
(
9
), pp.
3743
3759
.
72.
Bharathi
,
A. K. B. G.
, and
Tucker
,
C. S.
,
2015
, “
Investigating the Impact of Interactive Immersive Virtual Reality Environments in Enhancing Task Performance in Online Engineering Design Activities
,”
Proceedings of the Volume 3: 17th International Conference on Advanced Vehicle Technologies; 12th International Conference on Design Education; 8th Frontiers in Biomedical Devices
,
Boston, MA
,
Aug. 2
,
American Society of Mechanical Engineers
.
73.
Paes
,
D.
,
Irizarry
,
J.
, and
Pujoni
,
D.
,
2021
, “
An Evidence of Cognitive Benefits From Immersive Design Review: Comparing Three-Dimensional Perception and Presence Between Immersive and Non-Immersive Virtual Environments
,”
Autom. Constr.
,
130
, pp.
103849
.
74.
Tabbers
,
H. K.
,
Martens
,
R. L.
, and
Merriënboer
,
J. J. G.
,
2004
, “
Multimedia Instructions and Cognitive Load Theory: Effects of Modality and Cueing
,”
Br. J. Educ. Psychol.
,
74
(
1
), pp.
71
81
.
75.
Ibrahim
,
R.
, and
Pour Rahimian
,
F.
,
2010
, “
Comparison of CAD and Manual Sketching Tools for Teaching Architectural Design
,”
Autom. Constr.
,
19
(
8
), pp.
978
987
.
76.
Pontonnier
,
C.
,
Dumont
,
G.
,
Samani
,
A.
,
Madeleine
,
P.
, and
Badawi
,
M.
,
2014
, “
Designing and Evaluating a Workstation in Real and Virtual Environment: Toward Virtual Reality Based Ergonomic Design Sessions
,”
J. Multimodal User Interfaces
,
8
(
2
), pp.
199
208
.
77.
78.
Tsang
,
P. S.
, and
Velazquez
,
V. L.
,
1996
, “
Diagnosticity and Multidimensional Subjective Workload Ratings
,”
Ergonomics
,
39
(
3
), pp.
358
381
.
79.
Mathur
,
J.
,
2023
, “
3D Models for the DfAM Evaluation Exercise
,” https://sites.psu.edu/madebydesign/files/2023/10/assets.zip.
80.
Bradley
,
J. V.
,
1958
, “
Complete Counterbalancing of Immediate Sequential Effects in a Latin Square Design
,”
J. Am. Stat. Assoc.
,
53
(
282
), pp.
525
528
.
81.
Girard
,
J. M.
, and
Wright
,
A. G. C.
,
2018
, “
DARMA: Software for Dual Axis Rating and Media Annotation
,”
Behav. Res.
,
50
(
3
), pp.
902
909
.
82.
Lauff
,
C. A.
,
Kotys-Schwartz
,
D.
, and
Rentschler
,
M. E.
,
2018
, “
What Is a Prototype? What Are the Roles of Prototypes in Companies?
ASME J. Mech. Des.
,
140
(
6
), p.
061102
.
83.
Bucciarelli
,
L. L.
,
2002
, “
Between Thought and Object in Engineering Design
,”
Des. Stud.
,
23
(
3
), pp.
219
231
.
84.
Vinck
,
D.
,
2011
, “
Taking Intermediary Objects and Equipping Work Into Account in the Study of Engineering Practices
,”
Eng. Stud.
,
3
(
1
), pp.
25
44
.
85.
James
,
K. H.
,
Humphrey
,
G. K.
,
Vilis
,
T.
,
Corrie
,
B.
,
Baddour
,
R.
, and
Goodale
,
M. A.
,
2002
, “
‘Active’ and ‘Passive’ Learning of Three-Dimensional Object Structure Within an Immersive Virtual Reality Environment
,”
Behav. Res. Meth. Instr. Comp.
,
34
(
3
), pp.
383
390
.
86.
Fogarty
,
J.
,
McCormick
,
J.
, and
El-Tawil
,
S.
,
2018
, “
Improving Student Understanding of Complex Spatial Arrangements With Virtual Reality
,”
J. Prof. Issues Eng. Educ. Pract.
,
144
(
2
), pp.
04017013
.
87.
Rubio
,
S.
,
Diaz
,
E.
,
Martin
,
J.
, and
Puente
,
J. M.
,
2004
, “
Evaluation of Subjective Mental Workload: A Comparison of SWAT, NASA-TLX, and Workload Profile Methods
,”
Appl. Psychol.
,
53
(
1
), pp.
61
86
.
88.
Peña
,
E. A.
, and
Slate
,
E. H.
,
2006
, “
Global Validation of Linear Model Assumptions
,”
J. Am. Stat. Assoc.
,
101
(
473
), pp.
341
354
.
89.
Loy
,
A.
, and
Hofmann
,
H.
,
2014
, “
HLMdiag: A Suite of Diagnostics for Hierarchical Linear Models in R
,”
J. Stat. Soft.
,
56
(
5
).
You do not currently have access to this content.