Abstract

Interconnected complex systems usually undergo disruptions due to internal uncertainties and external negative impacts such as those caused by harsh operating environments or regional natural disaster events. To maintain the operation of interconnected network systems under both internal and external challenges, design for resilience research has been conducted from both enhancing the reliability of the system through better designs and improving the failure recovery capabilities. As for enhancing the designs, challenges have arisen for designing a robust system due to the increasing scale of modern systems and the complicated underlying physical constraints. To tackle these challenges and design a resilient system efficiently, this study presents a generative design method that utilizes graph learning algorithms. The generative design framework contains a performance estimator and a candidate design generator. The generator can intelligently mine good properties from existing systems and output new designs that meet predefined performance criteria while the estimator can efficiently predict the performance of the generated design for a fast iterative learning process. Case studies results based on synthetic supply chain networks and power systems from the IEEE dataset have illustrated the applicability of the developed method for designing resilient interdependent network systems.

References

1.
DeAngelis
,
D. L.
,
1980
, “
Energy Flow, Nutrient Cycling, and Ecosystem Resilience
,”
Ecology
,
61
(
4
), pp.
764
771
.
2.
Goerger
,
S. R.
,
Madni
,
A. M.
, and
Eslinger
,
O. J.
,
2014
, “
Engineered Resilient Systems: A Dod Perspective
,”
Procedia Comput. Sci.
,
28
, pp.
865
872
, 2014 Conference on Systems Engineering Research.
3.
Walker
,
B.
,
Holling
,
C.
,
Carpenter
,
S.
, and
Kinzig
,
A.
,
2004
, “
Resilience, Adaptability and Transformability in Social-Ecological Systems
,”
Conserv. Ecol.
,
9
(
2
), p.
5
.
4.
Wu
,
J.
, and
Wang
,
P.
,
2020
, “
Risk-Averse Optimization for Resilience Enhancement Under Uncertainty
,”
Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–19
, ASME, p. V11AT11A042.
5.
Ouyang
,
M.
, and
Fang
,
Y.
,
2017
, “
A Mathematical Framework to Optimize Critical Infrastructure Resilience Against Intentional Attacks
,”
Comput. Aided Civil Infrastruct. Eng.
,
32
(
11
), pp.
909
929
.
6.
Wu
,
J.
, and
Wang
,
P.
,
2021
, “
Post-Disruption Performance Recovery to Enhance Resilience of Interconnected Network Systems
,”
Sustain. Resilient Infrastruct.
,
6
(
1–2
), pp.
107
123
.
7.
Wu
,
J.
, and
Wang
,
P.
,
2021
, “
Risk-Averse Optimization for Resilience Enhancement of Complex Engineering Systems Under Uncertainties
,”
Reliab. Eng. Syst. Saf.
,
215
, p.
107836
.
8.
Chen
,
C.
,
Wang
,
J.
,
Qiu
,
F.
, and
Zhao
,
D.
,
2016
, “
Resilient Distribution System by Microgrids Formation After Natural Disasters
,”
IEEE Trans. Smart Grid
,
7
(
2
), pp.
958
966
.
9.
Wu
,
J.
,
Chen
,
X.
,
Badakhshan
,
S.
,
Zhang
,
J.
, and
Wang
,
P.
,
2022
, “
Spectral Graph Clustering for Intentional Islanding Operations in Resilient Hybrid Energy Systems
,”
IEEE Trans. Ind. Inform.
, pp.
1
9
.
10.
Ambia
,
M. N.
,
Meng
,
K.
,
Xiao
,
W.
, and
Dong
,
Z. Y.
,
2021
, “
Nested Formation Approach for Networked Microgrid Self-Healing in Islanded Mode
,”
IEEE Trans. Power Deliv.
,
36
(
1
), pp.
452
464
.
11.
Dall’Anese
,
E.
, and
Giannakis
,
G. B.
,
2014
, “
Sparsity-Leveraging Reconfiguration of Smart Distribution Systems
,”
IEEE Trans. Power Deliv.
,
29
(
3
), pp.
1417
1426
.
12.
Wu
,
J.
, and
Wang
,
P.
,
2019
, “
A Comparison of Control Strategies for Disruption Management in Engineering Design for Resilience
,”
ASCE-ASME J. Risk Uncert. Eng. Syst. Part B Mech. Eng.
,
5
(
2
), p.
020902
.
13.
Yodo
,
N.
, and
Wang
,
P.
,
2016
, “
Resilience Allocation for Early Stage Design of Complex Engineered Systems
,”
ASME J. Mech. Des.
,
138
(
9
), p.
091402
.
14.
Sharma
,
N.
,
Tabandeh
,
A.
, and
Gardoni
,
P.
,
2018
, “
Resilience Analysis: A Mathematical Formulation to Model Resilience of Engineering Systems
,”
Sustain. Resil. Infrastruct.
,
3
(
2
), pp.
49
67
.
15.
Bourennani
,
F.
,
Rahnamayan
,
S.
, and
Naterer
,
G. F.
,
2015
, “
Optimal Design Methods for Hybrid Renewable Energy Systems
,”
Int. J. Green Energy
,
12
(
2
), pp.
148
159
.
16.
Li
,
D.
,
Wu
,
J.
,
Zhang
,
J.
, and
Wang
,
P.
,
2021
, “
Co-Design Optimization of a Combined Heat and Power Hybrid Energy System
,”
Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–19
, ASME, p. V03AT03A028.
17.
Yodo
,
N.
, and
Wang
,
P.
,
2016
, “
Resilience Modeling and Quantification for Engineered Systems Using Bayesian Networks
,”
ASME J. Mech. Des.
,
138
(
3
), p.
031404
.
18.
Yodo
,
N.
,
Wang
,
P.
, and
Zhou
,
Z.
,
2017
, “
Predictive Resilience Analysis of Complex Systems Using Dynamic Bayesian Networks
,”
IEEE Trans. Reliab.
,
66
(
3
), pp.
761
770
.
19.
You
,
J.
,
Ying
,
R.
,
Ren
,
X.
,
Hamilton
,
W.
, and
Leskovec
,
J.
,
2018
, “
GraphRNN: Generating Realistic Graphs With Deep Auto-Regressive Models
,”
Proceedings of the 35th International Conference on Machine Learning
,
J.
Dy
and
A.
Krause
, eds.,
Stockholm, Sweden
,
July 10–15
, PMLR, Vo1. 80, pp.
5708
5717
.
20.
Liao
,
R.
,
Li
,
Y.
,
Song
,
Y.
,
Wang
,
S.
,
Hamilton
,
W. L.
,
Duvenaud
,
D.
,
Urtasun
,
R.
, and
Zemel
,
R.
,
2019
,
Efficient Graph Generation With Graph Recurrent Attention Networks
,
Curran Associates Inc.
,
Red Hook, NY
, pp.
4255
4265
.
21.
Liu
,
Q.
,
Allamanis
,
M.
,
Brockschmidt
,
M.
, and
Gaunt
,
A. L.
,
2018
, “
Constrained Graph Variational Autoencoders for Molecule Design
,”
Proceedings of the 32nd International Conference on Neural Information Processing Systems
,
Montreal, Canada
,
Dec. 3–8
, Curran Associates Inc., pp.
7806
7815
.
22.
Bailey
,
T.
, and
Elkan
,
C.
,
1994
, “
Fitting a Mixture Model by Expectation Maximization to Discover Motifs in Biopolymers
,”
Proceedings of the 2nd International Conference on Intelligent Systems for Molecular Biology
,
Stanford, CA
,
Aug. 14–17
, Vol. 2, pp.
28
36
.
23.
Kingma
,
D. P.
, and
Welling
,
M.
,
2014
, “
Auto-Encoding Variational Bayes
,”
Proceedings of the 2nd International Conference on Learning Representations
,
Banff, Canada
,
Apr. 14–16
.
24.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Proceedings of the 27th International Conference on Neural Information Processing Systems
,
Montreal, Canada
,
Dec. 8–13
.
25.
Heyrani Nobari
,
A.
,
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
Range-Gan: Range-Constrained Generative Adversarial Network for Conditioned Design Synthesis
,”
Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–19
, Vol. 85390, American Society of Mechanical Engineers, p. V03BT03A039.
26.
Qian
,
C.
,
Tan
,
R. K.
, and
Ye
,
W.
,
2022
, “
An Adaptive Artificial Neural Network-Based Generative Design Method for Layout Designs
,”
Int. J. Heat Mass Transfer
,
184
, p.
122313
.
27.
Oddiraju
,
M.
,
Behjat
,
A.
,
Nouh
,
M.
, and
Chowdhury
,
S.
,
2022
, “
Inverse Design Framework With Invertible Neural Networks for Passive Vibration Suppression in Phononic Structures
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021707
.
28.
Li
,
Y.
,
Tarlow
,
D.
,
Brockschmidt
,
M.
, and
Zemel
,
R. S.
,
2016
, “
Gated Graph Sequence Neural Networks
,”
Proceedings of the 4th International Conference on Learning Representations
,
San Juan, Puerto Rico
,
May 2–4
.
29.
Hammond
,
D. K.
,
Vandergheynst
,
P.
, and
Gribonval
,
R.
,
2011
, “
Wavelets on Graphs Via Spectral Graph Theory
,”
Appl. Comput. Harmonic Anal.
,
30
(
2
), pp.
129
150
.
30.
Defferrard
,
M.
,
Bresson
,
X.
, and
Vandergheynst
,
P.
,
2016
, “
Convolutional Neural Networks on Graphs With Fast Localized Spectral Filtering
,”
Proceedings of the 30th International Conference on Neural Information Processing Systems
,
Barcelona, Spain
,
Dec. 5–10
, Curran Associates Inc., pp.
3844
3852
.
31.
Kipf
,
T. N.
, and
Welling
,
M.
,
2017
, “
Semi-Supervised Classification With Graph Convolutional Networks
,”
Proceedings of the 5th International Conference on Learning Representations
,
Toulon, France
,
Apr. 24–26
.
32.
LeCun
,
Y.
,
Bottou
,
L.
,
Bengio
,
Y.
, and
Haffner
,
P.
,
1998
, “
Gradient-Based Learning Applied to Document Recognition
,”
Proc. IEEE
,
86
(
11
), pp.
2278
2323
.
33.
Bruna
,
J.
,
Zaremba
,
W.
,
Szlam
,
A.
, and
LeCun
,
Y.
,
2014
, “
Spectral Networks and Locally Connected Networks on Graphs
,”
Proceedings of the 2nd International Conference on Learning Representations
,
Banff, Canada
,
Apr. 14–16
.
34.
Hagberg
,
A. A.
,
Schult
,
D. A.
, and
Swart
,
P. J.
,
2008
, “
Exploring Network Structure, Dynamics, and Function Using Networkx
,”
Proceedings of the 7th Python in Science Conference
,
Pasadena, CA
,
Aug. 19–24
,
G.
Varoquaux
,
T.
Vaught
, and
J.
Millman
, eds., pp.
11
15
.
35.
Zhang
,
X.
,
Mahadevan
,
S.
,
Sankararaman
,
S.
, and
Goebel
,
K.
,
2018
, “
Resilience-Based Network Design Under Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
169
, pp.
364
379
.
36.
Cimellaro
,
G. P.
,
Villa
,
O.
, and
Bruneau
,
M.
,
2015
, “
Resilience-Based Design of Natural Gas Distribution Networks
,”
J. Infrastruct. Syst.
,
21
(
1
), p.
05014005
.
37.
Suribabu
,
C.
,
2017
, “
Resilience-Based Optimal Design of Water Distribution Network
,”
Appl. Water Sci.
,
7
(
7
), pp.
4055
4066
.
38.
Wang
,
Z.
,
Scaglione
,
A.
, and
Thomas
,
R. J.
,
2010
, “
Generating Statistically Correct Random Topologies for Testing Smart Grid Communication and Control Networks
,”
IEEE Trans. Smart Grid
,
1
(
1
), pp.
28
39
.
You do not currently have access to this content.