Abstract

This work presents a method for generating concept designs for coupled multiphysics problems by employing generative adversarial networks (GANs). Since the optimal designs of multiphysics problems often contain a combination of features that can be found in the single-physics solutions, we investigate the feasibility of learning the optimal design from the single-physics solutions, to produce concept designs for problems that are governed by a combination of these single physics. We employ GANs to produce optimal topologies similar to the results of level set topology optimization (LSTO) by finding a mapping between the sensitivity fields of specific boundary conditions, and the optimal topologies. To find this mapping, we perform image-to-image translation GAN training with a combination of structural, heat conduction, and a relatively smaller number of coupled structural and heat conduction data. We observe that the predicted topologies using GAN for coupled multiphysics problems are very similar to those generated by level set topology optimization, which can then be used as the concept designs for further detailed design. We show that using a combination of multiple single-physics data in the training improves the prediction of GAN for multiphysics problems. We provide several examples to demonstrate this.

References

1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods. Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
2.
Suzuki
,
K.
, and
Kikuchi
,
N.
,
1991
, “
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Methods. Appl. Mech. Eng.
,
93
(
3
), pp.
291
318
.
3.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9
), pp.
635
654
.
4.
Sigmund
,
O.
,
2007
, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
33
(
4–5
), pp.
401
424
.
5.
Norato
,
J.
,
Bell
,
B.
, and
Tortorelli
,
D. A.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods. Appl. Mech. Eng.
,
293
, pp.
306
327
.
6.
Kazemi
,
H.
,
Vaziri
,
A.
, and
Norato
,
J. A.
,
2018
, “
Topology Optimization of Structures Made of Discrete Geometric Components With Different Materials
,”
J. Mech. Des.
,
140
(
11
), p.
111401
.
7.
Kazemi
,
H.
,
Vaziri
,
A.
, and
Norato
,
J.
,
2019
, “
Topology Optimization of Multi-Material Lattices for Maximal Bulk Modulus
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, Vol. 59186, American Society of Mechanical Engineers, p. V02AT03A052.
8.
Kazemi
,
H.
,
Vaziri
,
A.
, and
Norato
,
J. A.
,
2020
, “
Multi-Material Topology Optimization of Lattice Structures Using Geometry Projection
,”
Comput. Methods. Appl. Mech. Eng.
,
363
, p.
112895
.
9.
Kazemi
,
H.
, and
Norato
,
J. A.
,
2021
, “
Topology Optimization of Lattices With Anisotropic Struts
,”
Struct. Multidiscipl. Optim.
,
63
(
4
), pp.
1653
1668
.
10.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2002
, “
A Level-Set Method for Shape Optimization
,”
Comp. Rendus Math.
,
334
(
12
), pp.
1125
1130
.
11.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
12.
Allaire
,
G.
,
De Gournay
,
F.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2005
, “
Structural Optimization Using Topological and Shape Sensitivity Via a Level Set Method
,”
Control Cybernet.
,
34
(
1
), p.
59
.
13.
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2015
, “
Introducing the Sequential Linear Programming Level-Set Method for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
51
(
3
), pp.
631
643
.
14.
Dunning
,
P. D.
,
Kim
,
H. A.
, and
Mullineux
,
G.
,
2011
, “
Investigation and Improvement of Sensitivity Computation Using the Area-Fraction Weighted Fixed Grid Fem and Structural Optimization
,”
Finite. Elem. Anal. Des.
,
47
(
8
), pp.
933
941
.
15.
Hoyer
,
S.
,
Sohl-Dickstein
,
J.
, and
Greydanus
,
S.
,
2019
, “
Neural Reparameterization Improves Structural Optimization
,”
arXiv preprint
arxiv.org/abs/1909.04240
16.
Zhang
,
Y.
,
Peng
,
B.
,
Zhou
,
X.
,
Xiang
,
C.
, and
Wang
,
D.
,
2019
, “
A Deep Convolutional Neural Network for Topology Optimization With Strong Generalization Ability
,”
arXiv preprint
. arxiv.org/abs/1901.07761
17.
Cang
,
R.
,
Yao
,
H.
, and
Ren
,
Y.
,
2019
, “
One-Shot Generation of Near-Optimal Topology Through Theory-Driven Machine Learning
,”
Comput. Aided Des.
,
109
, pp.
12
21
.
18.
Yu
,
Y.
,
Hur
,
T.
,
Jung
,
J.
, and
Jang
,
I. G.
,
2019
, “
Deep Learning for Determining a Near-Optimal Topological Design Without Any Iteration
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
787
799
.
19.
Chandrasekhar
,
A.
, and
Suresh
,
K.
,
2021
, “
Tounn: Topology Optimization Using Neural Networks
,”
Struct. Multidiscipl. Optim.
,
63
(
3
), pp.
1135
1149
.
20.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2021
, “
Topologygan: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
J. Mech. Des.
,
143
(
3
), p.
031715
.
21.
Kallioras
,
N. A.
,
Kazakis
,
G.
, and
Lagaros
,
N. D.
,
2020
, “
Accelerated Topology Optimization by Means of Deep Learning
,”
Struct. Multidiscipl. Optim.
,
62
(
3
), pp.
1185
1212
.
22.
Lin
,
Q.
,
Hong
,
J.
,
Liu
,
Z.
,
Li
,
B.
, and
Wang
,
J.
,
2018
, “
Investigation Into the Topology Optimization for Conductive Heat Transfer Based on Deep Learning Approach
,”
Int. Commun. Heat Mass Transfer
,
97
, pp.
103
109
.
23.
Li
,
B.
,
Huang
,
C.
,
Li
,
X.
,
Zheng
,
S.
, and
Hong
,
J.
,
2019
, “
Non-Iterative Structural Topology Optimization Using Deep Learning
,”
Comput. Aided Des.
,
115
, pp.
172
180
.
24.
Li
,
B.
,
Tang
,
W.
,
Ding
,
S.
, and
Hong
,
J.
,
2020
, “
A Generative Design Method for Structural Topology Optimization Via Transformable Triangular Mesh (TTM) Algorithm
,”
Struct. Multidiscipl. Optim.
,
62
(
3
), pp.
1159
1183
.
25.
Seo
,
J.
, and
Kapania
,
R. K.
,
2022
, “
Development of Deep Convolutional Neural Network for Structural Topology Optimization
,”
AIAA SCITECH 2022 Forum
,
San Diego, CA
,
Jan. 3–7
, p.
2351
.
26.
Guo
,
T.
,
Lohan
,
D. J.
,
Cang
,
R.
,
Ren
,
M. Y.
, and
Allison
,
J. T.
,
2018
, “
An Indirect Design Representation for Topology Optimization Using Variational Autoencoder and Style Transfer
,”
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
,
Jan. 8–12
, p.
0804
.
27.
Hankins
,
S. N.
, and
Fertig
,
R. S.
,
2022
, “
Bioinspired Patterns From a Generative Design Framework for Size and Topology Optimization
,”
AIAA SCITECH 2022 Forum
,
San Diego, CA
,
Jan. 3–7
, p.
0102
.
28.
Menon
,
A. M.
,
Kopparthi
,
T. R.
,
Omprakash
,
P.
,
Verma
,
H.
,
Haldar
,
A.
,
Swayamjyoti
,
S.
,
Sahu
,
K. K.
, and
Featherston
,
C.
,
2022
, “
Deep Learning-Based Optimization of Piezoelectric Vibration Energy Harvesters
,”
AIAA SCITECH 2022 Forum
,
San Diego, CA
,
Jan. 3–7
, p.
2142
.
29.
Almasri
,
W.
,
Bettebghor
,
D.
,
Ababsa
,
F.
,
Danglade
,
F.
, and
Adjed
,
F.
,
2021
, “
Deep Learning Architecture for Topological Optimized Mechanical Design Generation With Complex Shape Criterion
,”
International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems
,
Kuala Lumpur, Malaysia
,
July 26–29
, Springer, pp.
222
234
.
30.
Maksum
,
Y.
,
Amirli
,
A.
,
Amangeldi
,
A.
,
Inkarbekov
,
M.
,
Ding
,
Y.
,
Romagnoli
,
A.
,
Rustamov
,
S.
, and
Akhmetov
,
B.
,
2022
, “
Computational Acceleration of Topology Optimization Using Parallel Computing and Machine Learning Methods–Analysis of Research Trends
,”
J. Ind. Inform. Integr.
,
28
, p.
100352
.
31.
Herath
,
S.
,
Haputhanthri
,
U.
, and
Mallikarachchi
,
C.
,
2020
, “
Initial Design of Trusses Using Topology Optimization in a Deep Learning Environment
,”
2020 From Innovation to Impact (FITI)
,
Colombo, Sri Lanka
,
Dec. 15
, Vol. 1, IEEE, pp.
1
6
.
32.
Dommaraju
,
N.
,
Bujny
,
M.
,
Menzel
,
S.
,
Olhofer
,
M.
, and
Duddeck
,
F.
,
2022
, “
Evaluation of Geometric Similarity Metrics for Structural Clusters Generated Using Topology Optimization
,”
Appl. Intel.
,
52
(
10
), pp.
1
26
.
33.
Liu
,
C.-X.
, and
Yu
,
G.-L.
,
2022
, “
Inverse Design of Locally Resonant Metabarrier by Deep Learning With a Rule-Based Topology Dataset
,”
Comput. Methods. Appl. Mech. Eng.
,
394
, p.
114925
.
34.
Sahachaisaree
,
S.
,
Sae-Ma
,
P.
, and
Nanakorn
,
P.
,
2020
, “
Two-Dimensional Truss Topology Design by Reinforcement Learning
,”
ICSCEA 2019
,
Ho Chi Minh City, Vietnam
,
Oct. 24–26
, Springer, pp.
1237
1245
.
35.
Barmada
,
S.
,
Fontana
,
N.
,
Formisano
,
A.
,
Thomopulos
,
D.
, and
Tucci
,
M.
,
2021
, “
A Deep Learning Surrogate Model for Topology Optimization
,”
IEEE. Trans. Magn.
,
57
(
6
), pp.
1
4
.
36.
Asanuma
,
J.
,
Doi
,
S.
, and
Igarashi
,
H.
,
2020
, “
Transfer Learning Through Deep Learning: Application to Topology Optimization of Electric Motor
,”
IEEE. Trans. Magn.
,
56
(
3
), pp.
1
4
.
37.
Tucci
,
M.
,
Barmada
,
S.
,
Formisano
,
A.
, and
Thomopulos
,
D.
,
2021
, “
A Regularized Procedure to Generate a Deep Learning Model for Topology Optimization of Electromagnetic Devices
,”
Electronics
,
10
(
18
), p.
2185
.
38.
Deng
,
H.
, and
To
,
A. C.
,
2020
, “
Topology Optimization Based on Deep Representation Learning (DRL) for Compliance and Stress-Constrained Design
,”
Comput. Mech.
,
66
(
2
), pp.
449
469
.
39.
Zehnder
,
J.
,
Li
,
Y.
,
Coros
,
S.
, and
Thomaszewski
,
B.
,
2021
, “
Ntopo: Mesh-Free Topology Optimization Using Implicit Neural Representations
,”
Adv. Neural Inform. Process. Syst.
,
34
, pp.
10368
10381
.
40.
Liu
,
H.
,
Hu
,
Y.
,
Zhu
,
B.
,
Matusik
,
W.
, and
Sifakis
,
E.
,
2018
, “
Narrow-Band Topology Optimization on a Sparsely Populated Grid
,”
ACM Trans. Graph. (TOG)
,
37
(
6
), pp.
1
14
.
41.
Rawat
,
S.
, and
Shen
,
M. H.
,
2019
, “
Application of Adversarial Networks for 3D Structural Topology Optimization
,”
SAE Technical Paper
.
42.
Ulu
,
E.
,
Zhang
,
R.
, and
Kara
,
L. B.
,
2016
, “
A Data-Driven Investigation and Estimation of Optimal Topologies Under Variable Loading Configurations
,”
Comput. Methods Biomech. Biomed. Eng. Imag. Visual.
,
4
(
2
), pp.
61
72
.
43.
Raina
,
A.
,
McComb
,
C.
, and
Cagan
,
J.
,
2019
, “
Learning to Design From Humans: Imitating Human Designers Through Deep Learning
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111102
.
44.
Zhang
,
W.
,
Yang
,
Z.
,
Jiang
,
H.
,
Nigam
,
S.
,
Yamakawa
,
S.
,
Furuhata
,
T.
,
Shimada
,
K.
, and
Kara
,
L. B.
,
2019
, “
3d Shape Synthesis for Conceptual Design and Optimization Using Variational Autoencoders
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
,
Anaheim, CA
,
Aug. 18–21
.
45.
Banga
,
S.
,
Gehani
,
H.
,
Bhilare
,
S.
,
Patel
,
S.
, and
Kara
,
L.
,
2018
, “
3D Topology Optimization Using Convolutional Neural Networks
,” arXiv preprint arXiv:1808.07440.
46.
Kumar
,
T.
, and
Suresh
,
K.
,
2020
, “
A Density-and-Strain-Based K-Clustering Approach to Microstructural Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
61
(
4
), pp.
1399
1415
.
47.
Abueidda
,
D. W.
,
Koric
,
S.
, and
Sobh
,
N. A.
,
2020
, “
Topology Optimization of 2D Structures With Nonlinearities Using Deep Learning
,”
Comput. Struct.
,
237
, p.
106283
.
48.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
49.
Sharpe
,
C.
, and
Seepersad
,
C. C.
,
2019
, “
Topology Design With Conditional Generative Adversarial Networks
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug 14–17, 2022
.
50.
Merugu
,
S.
, and
Ghosh
,
J.
,
2003
, “
Privacy-Preserving Distributed Clustering Using Generative Models
,”
Third IEEE International Conference on Data Mining
,
Melbourne, FL
,
Nov. 19–22
, IEEE, pp.
211
218
.
51.
Esser
,
P.
,
Rombach
,
R.
, and
Ommer
,
B.
,
2020
, “
A Note on Data Biases in Generative Models
,” arXiv preprint arXiv:2012.02516.
52.
Li
,
K.
,
Yang
,
S.
,
Sullivan
,
T. M.
,
Burd
,
R. S.
, and
Marsic
,
I.
,
2022
, “
Generating Privacy-Preserving Process Data With Deep Generative Models
,” arXiv preprint arXiv:2203.07949.
53.
Ghaemi
,
M. S.
,
Grantham
,
K.
,
Tamblyn
,
I.
,
Li
,
Y.
, and
Ooi
,
H. K.
,
2022
, “
Generative Enriched Sequential Learning (esl) Approach for Molecular Design via Augmented Domain Knowledge
,” arXiv preprint arXiv:2204.02474.
54.
Yelmen
,
B.
,
Decelle
,
A.
,
Ongaro
,
L.
,
Marnetto
,
D.
,
Tallec
,
C.
,
Montinaro
,
F.
,
Furtlehner
,
C.
,
Pagani
,
L.
, and
Jay
,
F.
,
2021
, “
Creating Artificial Human Genomes Using Generative Neural Networks
,”
PLoS. Genet.
,
17
(
2
), p.
e1009303
.
55.
Goodfellow
,
I. J.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Networks
,” arXiv preprint arXiv:1406.2661.
56.
Eslami
,
M. R.
,
Hetnarski
,
R. B.
,
Ignaczak
,
J.
,
Noda
,
N.
,
Sumi
,
N.
, and
Tanigawa
,
Y.
,
2013
,
Theory of Elasticity and Thermal Stresses
, Vol.
197
,
Springer
,
New York
.
57.
Hedges
,
L. O.
,
Kim
,
H. A.
, and
Jack
,
R. L.
,
2017
, “
Stochastic Level-Set Method for Shape Optimisation
,”
J. Comput. Phys.
,
348
, pp.
82
107
.
58.
Picelli
,
R.
,
Townsend
,
S.
,
Brampton
,
C.
,
Norato
,
J.
, and
Kim
,
H.
,
2018
, “
Stress-Based Shape and Topology Optimization With the Level Set Method
,”
Comput. Methods. Appl. Mech. Eng.
,
329
, pp.
1
23
.
59.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods. Appl. Mech. Eng.
,
192
, pp.
227
246
.
60.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A. M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
, pp.
363
393
.
61.
Pathak
,
D.
,
Krahenbuhl
,
P.
,
Donahue
,
J.
,
Darrell
,
T.
, and
Efros
,
A. A.
,
2016
, “
Context Encoders: Feature Learning by Inpainting
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27–30
, pp.
2536
2544
.
62.
Isola
,
P.
,
Zhu
,
J.-Y.
,
Zhou
,
T.
, and
Efros
,
A. A.
,
2017
, “
Image-to-Image Translation With Conditional Adversarial Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
1125
1134
.
63.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-net: Convolutional Networks for Biomedical Image Segmentation
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
,
Munich, Germany
,
Oct. 5–9
, Springer, pp.
234
241
.
64.
Hinton
,
G. E.
, and
Salakhutdinov
,
R. R.
,
2006
, “
Reducing the Dimensionality of Data With Neural Networks
,”
Science
,
313
(
5786
), pp.
504
507
.
65.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization. ICLR. 2015
,” arXiv preprint arXiv:1412.6980, 9.
66.
Sethian
,
J.
,
1996
, “
A Fast Marching Level Set Method for Monotonically Advancing Fronts
,”
Proc. Natl. Acad. Sci. USA
,
93
(
4
), pp.
1591
1595
.
67.
Sandilya
,
K.
,
Du
,
Z.
,
Chung
,
H.
,
Kim
,
H. A.
,
Jauregui
,
C.
,
Townsend
,
S.
,
Picelli
,
R.
,
Zhou
,
X. Y.
, and
Hedges
,
L.
,
2018
, “
Openlsto: Open-Source Software for Level Set Topology Optimization
,”
Multidisciplinary Analysis and Optimization Conference
,
Atlanta, GA
,
June 25–29
, p.
3882
.
You do not currently have access to this content.