Abstract

System architecture and modularity decisions are inherent to preliminary concept design. Prior modularity research has considered minimizing interactions between modules and increasing the commonality among modular product variants. Effective approaches include function structure partitioning guidelines, affinity analysis, or matrix clustering algorithms. We consider here designs with field constraints, such as situations when elements cannot be placed in certain regions such as a high-temperature field, a high-pressure field, a high magnetic field, etc. which place constraints on modularity choices. Practical design guidelines are developed here for modularity considering field constraints. Two types of guidelines are proposed, field separation and concept generation. The field separation guidelines propose zonal boundaries within which system modules need be confined. The concept generation guidelines propose how to violate the field constraints through new concepts. Moving functionality from one side of a field boundary to the other is nontrivial and involves new concept generation for the modules to function at the higher or lower field values. The guidelines are defined and illustrated via multiple common examples as well as two extended case studies. We demonstrate the approach using field boundaries on an electric motor controller and on a medical contrast injector, and also use of fields to generated novel concepts. The guidelines support for modularity concept and embodiment decisions.

References

1.
Otto
,
K.
, and
Wood
,
K.
,
2001
,
Product Design: Techniques in Reverse Engineering, Systematic Design, and New Product Development
,
Prentice Hall
,
New York
.
2.
Stone
,
R.
,
Wood
,
K.
, and
Crawford
,
R.
,
2000
, “
A Heuristic Method for Identifying Modules for Product Architectures
,”
Des. Stud.
,
21
(
1
), pp.
5
31
. 10.1016/S0142-694X(99)00003-4
3.
Steward
,
D.
,
1981
, “
The Design Structure System: A Method for Managing the Design of Complex Systems
,”
IEEE Trans. Eng. Manage.
,
28
(
3
), pp.
71
74
. 10.1109/TEM.1981.6448589
4.
Eppinger
,
S.
,
Whitney
,
D.
,
Smith
,
R.
, and
Gebala
,
D.
,
1994
, “
A Model-Based Method for Organizing Tasks in Product Development
,”
Res. Eng. Des.
,
6
(
1
), pp.
1
13
. 10.1007/BF01588087
5.
Blackenfelt
,
M.
,
2001
, “
Managing Complexity by Product Modularisation
,” Ph.D. thesis,
KTH
.
6.
Thebeau
,
R.
,
2001
, “
Knowledge Management of System Interfaces and Interactions From Product Development Processes
,” M.S. thesis,
Massachusetts Institute of Technology
.
7.
Sosa
,
M.
,
Eppinger
,
S.
, and
Rowles
,
C.
,
2007
, “
A Network Approach to Define Modularity of Components in Complex Products
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1118
1129
. 10.1115/1.2771182
8.
Browning
,
T.
,
2001
, “
Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions
,”
IEEE Trans. Eng. Manage.
,
48
(
3
), pp.
292
306
. 10.1109/17.946528
9.
Borjesson
,
F.
, and
Hölttä-Otto
,
K.
,
2012
, “
Improved Clustering Algorithm for Design Structure Matrix
,”
ASME 2012 International Design Engineering Technical Conferences
,
Chicago, IL
,
Aug. 12–15
, pp.
921
930
.
10.
Guo
,
F.
, and
Gershenson
,
J.
,
2004
, “
A Comparison of Modular Product Design Methods Based on Improvement and Iteration
,”
Design Engineering Technical Conferences
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
,
ASME
, pp.
261
269
.
11.
Newcomb
,
N.
,
Rosen
,
D.
, and
Bras
,
B.
,
2003
, “
Life Cycle Modularity Metrics for Product Design
,”
Proceedings of Third International Symposium on Environmentally Conscious Design and Inverse Manufacturing, EcoDesign.
,
Tokyo, Japan
,
Dec. 8–11
, pp.
251
258
.
12.
Hölttä-Otto
,
K.
,
Chiriac
,
N.
,
Lysy
,
D.
, and
Suh
,
E. S.
,
2012
, “
Comparative Analysis of Coupling Modularity Metrics
,”
J. Eng. Des.
,
23
(
10–11
), pp.
790
806
. 10.1080/09544828.2012.701728
13.
Hölttä-Otto
,
K.
, and
De Weck
,
O.
,
2007
, “
Degree of Modularity in Engineering Systems and Products With Technical and Business Constraints
,”
Concurrent Eng.
,
15
(
2
), pp.
113
126
. 10.1177/1063293X07078931
14.
Hölttä
,
K.
, and
Salonen
,
M.
,
2003
, “
Comparing Three Different Modularity Methods
,”
International Design Engineering Technical Conferences
,
Chicago, IL
,
Sept. 2–6
,
ASME
, pp.
533
541
.
15.
Chiriac
,
N.
,
Hölttä-Otto
,
K.
,
Lysy
,
D.
, and
Suh
,
E. S.
,
2011
, “
Level of Modularity and Different Levels of System Granularity
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101007
. 10.1115/1.4005069
16.
Ericsson
,
A.
, and
Erixon
,
G.
,
1999
,
Controlling Design Variants: Modular Product Platforms
,
Society of Manufacturing Engineers
,
Dearborn
.
17.
Kusiak
,
A.
, and
Huang
,
C.
,
1997
, “
Design of Modular Digital Circuits for Testability
,”
IEEE Trans. Compon., Packag., Manuf. Technol. Part C
,
20
(
1
), pp.
48
57
. 10.1109/3476.585144
18.
Qian
,
X.
, and
Zhang
,
H.
,
2009
, “
Design for Environment: An Environmentally Conscious Analysis Model for Modular Design
,”
IEEE Trans. Electron. Packag. Manuf.
,
32
(
3
), pp.
164
175
. 10.1109/TEPM.2009.2022544
19.
Blees
,
C.
,
Jonas
,
H.
, and
Krause
,
D.
,
2010
, “
Development of Modular Product Families
,”
Proceedings of the 12th International DSM Conference
,
Cambridge, UK
,
July 22–23
, pp.
169
182
.
20.
Mikkola
,
J.
, and
Gassmann
,
O.
,
2003
, “
Managing Modularity of Product Architectures: Toward an Integrated Theory
,”
IEEE Trans. Eng. Manage.
,
50
(
2
), pp.
204
218
. 10.1109/TEM.2003.810826
21.
Ripperda
,
S.
, and
Krause
,
D.
,
2017
, “
Cost Effects of Modular Product Family Structures: Methods and Quantification of Impacts to Support Decision Making
,”
ASME J. Mech. Des.
,
139
(
2
), pp.
021103
. 10.1115/1.4035430
22.
Pahl
,
G.
, and
Beitz
,
W.
,
2013
,
Engineering Design: A Systematic Approach
,
Springer Science & Business Media
,
London
.
23.
Hirtz
,
J.
,
Stone
,
R.
,
McAdams
,
D.
,
Szykman
,
S.
, and
Wood
,
K.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
. 10.1007/s00163-001-0008-3
24.
Stone
,
R.
, and
Wood
,
K.
,
2000
, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
359
370
. 10.1115/1.1289637
25.
Kurfman
,
M.
,
Stock
,
M.
,
Stone
,
R.
,
Rajan
,
J.
, and
Wood
,
K.
,
2003
, “
Experimental Studies Assessing the Repeatability of a Functional Modeling Derivation Method
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
682
693
. 10.1115/1.1625400
26.
Dahmus
,
J.
,
Gonzalez-Zugasti
,
J.
, and
Otto
,
K.
,
2001
, “
Modular Product Architecture
,”
Des. Stud.
,
22
(
5
), pp.
409
424
. 10.1016/S0142-694X(01)00004-7
27.
Gonzalez-Zugasti
,
J.
,
2000
, “
Models for Platform-Based Product Family Design
,” Ph.D. thesis,
Massachusetts Institute of Technology
.
28.
Yu
,
J.
,
Gonzalez-Zugasti
,
J.
, and
Otto
,
K.
,
1999
, “
Product Architecture Definition Based Upon Customer Demands
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
329
335
. 10.1115/1.2829464
29.
Stone
,
R.
,
Wood
,
K.
, and
Crawford
,
R.
,
2000
, “
Using Quantitative Functional Models to Develop Product Architectures
,”
Des. Stud.
,
21
(
3
), pp.
239
260
. 10.1016/S0142-694X(99)00008-3
30.
Zamirowski
,
E.
, and
Otto
,
K.
,
1999
, “
Identifying Product Family Architecture Modularity Using Function and Variety Heuristics
,”
Design Theory and Methodology Conference
,
Las Vegas, NV
,
Sept. 12–15
,
ASME
, pp.
1513
1518
.
31.
Lefever
,
D.
, and
Wood
,
K.
,
1996
, “
Design for Assembly Techniques in Reverse Engineering and Redesign
,”
Design Theory and Methodology Conference
,
Irvine CA
,
Aug. 18–22
,
ASME
, pp.
1
28
.
32.
Skakoon
,
J.
,
2000
,
Detailed Mechanical Design: A Practical Guide
,
American Society of Mechanical Engineers
,
New York
.
33.
Ullman
,
D.
,
1992
,
The Mechanical Design Process
,
McGraw-Hill
,
New York
.
34.
Greer
,
J.
,
Jensen
,
D.
, and
Wood
,
K.
,
2004
, “
Effort Flow Analysis: A Methodology for Directed Product Evolution
,”
Des. Stud.
,
25
(
2
), pp.
193
214
. 10.1016/j.destud.2003.09.002
35.
Paynter
,
H.
,
1961
,
Analysis and Design of Engineering Systems
,
MIT Press
,
Cambridge
.
36.
Ersal
,
T.
,
Fathy
,
H.
,
Louca
,
L.
,
Rideout
,
D.
, and
Stein
,
J.
,
2008
, “
A Review of Proper Modeling Techniques
,”
J. Dyn. Syst. Meas. Contr.
,
130
(
6
), pp.
1533
1549
.
37.
Fu
,
K.
,
Yang
,
M.
, and
Wood
,
K.
,
2016
, “
Design Principles: Literature Review, Analysis, and Future Directions
,”
ASME J. Mech. Des.
,
138
(
10
), p.
101103
. 10.1115/1.4034105
38.
Boothroyd
,
G.
,
Dewhurst
,
P.
, and
Knight
,
W.
,
2001
,
Product Design for Manufacture and Assembly
,
CRC Press
,
New York
.
39.
Rajan
,
J.
,
Stone
,
R.
, and
Wood
,
K.
,
2003
, “
Functional Modeling of Control Systems
,”
14th International Conference on Engineering Design
,
Stockholm
,
Aug. 19–21
, pp.
215
216
.
40.
Hauenstein
,
K.
,
2000
, “
Platform Design of a Motor Drive
,” M.S. thesis,
Massachusetts Institute of Technology
.
41.
Cowan
,
K.
,
Reilly
,
D.
,
Fularz
,
J.
,
Swartz
,
P.
,
Trocki
,
M.
, and
Mishler
,
D.
,
2010
, Injectors, Injector Systems and Methods for Injecting Fluids, US Patent US7670315B2.
You do not currently have access to this content.