The conventional reliability-based design optimization (RBDO) methods assume that a simulation model is able to represent the real physics accurately. However, this assumption may not always hold as the simulation model could be biased. Accordingly, designed product based on the conventional RBDO optimum may either not satisfy the target reliability or be overly conservative design. Therefore, simulation model validation using output experimental data, which corrects model bias, should be integrated in the RBDO process. With particular focus on RBDO, the model validation needs to account for the uncertainty induced by insufficient experimental data as well as the inherent variability of the products. In this paper, a confidence-based model validation method that captures the variability and the uncertainty, and that corrects model bias at a user-specified target confidence level, has been developed. The developed model validation helps RBDO to obtain a conservative RBDO optimum design at the target confidence level. The RBDO with model validation may have a convergence issue because the feasible domain changes as the design moves (i.e., a moving-target problem). To resolve the issue, a practical optimization procedure is proposed. Furthermore, the efficiency is achieved by carrying out deterministic design optimization (DDO) and RBDO without model validation, followed by RBDO with confidence-based model validation. Finally, we demonstrate that the proposed RBDO approach can achieve a conservative and practical optimum design given a limited number of experimental data.

References

1.
Klir
,
G. J.
, and
Folger
,
T. A.
,
1988
,
Fuzzy Sets, Uncertainty, and Information
,
Prentice Hall
,
Englewood Cliffs, NJ
.
2.
Oberkampf
,
W. L.
,
Helton
,
J. C.
, and
Sentz
,
K.
,
2001
, “
Mathematical Representation of Uncertainty
,”
AIAA
Paper No. 2001-1645.
3.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
New York
.
4.
Lee
,
I.
,
Choi
,
K. K.
, and
Zhao
,
L.
,
2011
, “
Sampling-Based RBDO Using the Dynamic Kriging Method and Stochastic Sensitivity Analysis
,”
Struct. Multidiscip. Optim.
,
44
(
3
), pp.
299
317
.
5.
Lee
,
I.
,
Choi
,
K. K.
,
Noh
,
Y.
,
Zhao
,
L.
, and
Gorsich
,
D.
,
2011
, “
Sampling-Based Stochastic Sensitivity Analysis Using Score Functions for RBDO Problems With Correlated Random Variables
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021003
.
6.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
An Exact and Invariant First Order Reliability Format
,”
J. Eng. Mech.
,
100
(
1
), pp.
111
121
.
7.
Mahadevan
,
S.
, and
Haldar
,
A.
,
2000
,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
8.
Chiralaksanakul
,
A.
, and
Mahadevan
,
S.
,
2005
, “
First-Order Approximation Methods in Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
851
857
.
9.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
1999
, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
557
564
.
10.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
,
1988
, “
Improvement of Second-Order Reliability Estimates by Importance Sampling
,”
ASCE J. Eng. Mech.
,
114
(
12
), pp.
2195
2199
.
11.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.
12.
Oberkampf
,
W. L.
, and
Barone
,
M. F.
,
2006
, “
Measures of Agreement Between Computation and Experiment: Validation Metrics
,”
J. Comput. Phys.
,
217
(
1
), pp.
5
36
.
13.
Chen
,
W.
,
Xiong
,
Y.
,
Tsui
,
K. L.
, and
Wang
,
S.
,
2006
, “
Some Metrics and a Bayesian Procedure for Validating Predictive Models in Engineering Design
,”
ASME
Paper No. DETC2006-99599.
14.
Ferson
,
S.
,
Oberkampf
,
W. L.
, and
Ginzburg
,
L.
,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29
), pp.
2408
2430
.
15.
Loeppky
,
J.
,
Bingham
,
D.
, and
Welch
,
W.
,
2006
, “
Computer Model Calibration or Tuning in Practice
,” University of British Columbia, Vancouver, BC, Canada,
Report No. 221
.
16.
Xiong
,
Y.
,
Chen
,
W.
,
Tsui
,
K. L.
, and
Apley
,
D.
,
2009
, “
A Better Understanding of Model Updating Strategies in Validating Engineering Models
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
15–16
), pp.
1327
1337
.
17.
Youn
,
B. D.
,
Jung
,
B. C.
,
Xi
,
Z.
,
Kim
,
S. B.
, and
Lee
,
W. R.
,
2011
, “
A Hierarchical Framework for Statistical Model Calibration in Engineering Product Development
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
13–16
), pp.
1421
1431
.
18.
Drignei
,
D.
,
Mourelatos
,
Z. P.
,
Kokkolaras
,
M.
,
Pandey
,
V.
, and
Koscik
,
G.
,
2012
, “
A Variable-Size Local Domain Approach for Increased Design Confidence in Simulation-Based Optimization
,”
Struct. Multidiscip. Optim.
,
46
(
1
), pp.
83
92
.
19.
Drignei
,
D.
,
Mourelatos
,
Z. P.
,
Pandey
,
V.
, and
Kokkolaras
,
M.
,
2012
, “
Concurrent Design Optimization and Calibration-Based Validation using Local Domains Sized by Bootstrapping
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100910
.
20.
Xi
,
Z.
,
Fu
,
Y.
, and
Yang
,
R. J.
,
2013
, “
Model Bias Characterization in the Design Space Under Uncertainty
,”
Int. J. Performability Eng.
,
9
(
4
), pp.
433
444
.
21.
Jiang
,
Z.
,
Chen
,
W.
,
Fu
,
Y.
, and
Yang
,
R. J.
,
2013
, “
Reliability-Based Design Optimization With Model Bias and Data Uncertainty
,”
SAE Int. J. Mater. Manuf.
,
6
(
3
), pp.
502
516
.
22.
Xi
,
Z.
,
Hao
,
P.
,
Fu
,
Y.
, and
Yang
,
R. J.
,
2014
, “
A Copula-Based Approach for Model Bias Characterization
,”
SAE Int. J. Passenger Cars-Mech. Syst.
,
7
(
2
), pp.
781
786
.
23.
Hao
,
P.
,
Xi
,
Z.
, and
Yang
,
R. J.
,
2016
, “
Model Uncertainty Approximation Using a Copula-Based Approach for Reliability Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
54
, pp.
1
14
.
24.
Higdon
,
D.
,
Nakhleh
,
C.
,
Gattiker
,
J.
, and
Williams
,
B.
,
2008
, “
A Bayesian Calibration Approach to the Thermal Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2431
2441
.
25.
Arendt
,
P.
,
Apley
,
D.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100908
.
26.
Arendt
,
P.
,
Apley
,
D.
,
Chen
,
W.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2012
, “
Improving Identifiability in Model Calibration Using Multiple Responses
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100909
.
27.
Picheny
,
V.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2010
, “
Application of Bootstrap Method in Conservative Estimation of Reliability With Limited Samples
,”
Struct. Multidiscip. Optim.
,
41
(
2
), pp.
205
217
.
28.
Wang
,
Z.
, and
Wang
,
P.
,
2014
, “
A Maximum Confidence Enhancement Based Sequential Sampling Scheme for Simulation-Based Design
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021006
.
29.
Park
,
C.
, and
Kim
,
N. H.
,
2016
, “
Safety Envelope for Load Tolerance of Structural Element Design Based on Multi-Stage Testing
,”
Adv. Mech. Eng.
,
8
(
9
), pp.
1
11
.
30.
Gunawan
,
S.
, and
Papalambros
,
P. Y.
,
2006
, “
A Bayesian Approach to Reliability-Based Optimization With Incomplete Information
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
909
918
.
31.
Youn
,
B. D.
, and
Wang
,
P.
,
2008
, “
Bayesian Reliability-Based Design Optimization Using Eigenvector Dimension Reduction (EDR) Method
,”
Struct. Multidiscip. Optim.
,
36
(
2
), pp.
107
123
.
32.
Choi
,
J.
,
An
,
D.
, and
Won
,
J.
,
2010
, “
Bayesian Approach for Structural Reliability Analysis and Optimization Using the Kriging Dimension Reduction Method
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051003
.
33.
Noh
,
Y.
,
Choi
,
K. K.
,
Lee
,
I.
,
Gorsich
,
D.
, and
Lamb
,
D.
,
2011
, “
Reliability-Based Design Optimization With Confidence Level Under Input Model Uncertainty Due to Limited Test Data
,”
Struct. Multidiscip. Optim.
,
43
(
4
), pp.
443
458
.
34.
Noh
,
Y.
,
Choi
,
K. K.
,
Lee
,
I.
, and
Gorsich
,
D.
,
2011
, “
Reliability-Based Design Optimization With Confidence Level for Non-Gaussian Distributions Using Bootstrap Method
,”
ASME J. Mech. Des.
,
133
(
9
), p.
091001
.
35.
Cho
,
H.
,
Choi
,
K. K.
,
Gaul
,
N.
,
Lee
,
I.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2016
, “
Conservative Reliability-Based Design Optimization Method With Insufficient Input Data
,”
Struct. Multidiscip. Optim.
,
54
(
6
), pp.
1
22
.
36.
Zaman
,
K.
, and
Mahadevan
,
S.
,
2016
, “
Reliability-Based Design Optimization of Multidisciplinary System Under Aleatory and Epistemic Uncertainty
,”
Struct. Multidiscip. Optim.
,
2016
, pp.
1
19
.
37.
Silverman
,
B. W.
,
1986
,
Density Estimation for Statistics and Data Analysis
,
Chapman & Hall
,
London
.
38.
Moon
,
M. Y.
,
Choi
,
K. K.
,
Cho
,
H.
,
Gaul
,
N.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2015
, “
Development of a Conservative Model Validation Approach for Reliable Analysis
,”
ASME
Paper No. DETC2015-46982.
39.
Martins
,
J. R.
,
Sturdza
,
P.
, and
Alonso
,
J. J.
,
2003
, “
The Complex-Step Derivative Approximation
,”
ACM Trans. Math. Software (TOMS)
,
29
(
3
), pp.
245
262
.
40.
Zhao
,
L.
,
Choi
,
K. K.
, and
Lee
,
I.
,
2011
, “
Metamodeling Method Using Dynamic Kriging for Design Optimization
,”
AIAA J.
,
49
(
9
), pp.
2034
2046
.
41.
Song
,
H.
,
Choi
,
K. K.
, and
Lamb
,
D.
,
2013
, “
A Study on Improving the Accuracy of Kriging Models by Using Correlation Model/Mean Structure Selection and Penalized Log-Likelihood Function
,”
10th World Congress on Structural and Multidisciplinary Optimization
, Orlando, FL, May 19–24.
42.
Volpi
,
S.
,
Diez
,
M.
,
Gaul
,
N. J.
,
Song
,
H.
,
Iemma
,
U.
,
Choi
,
K. K.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2014
, “
Development and Validation of a Dynamic Metamodel Based on Stochastic Radial Basis Functions and Uncertainty Quantification
,”
Struct. Multidiscip. Optim.
,
51
(
2
), pp.
1
22
.
43.
Sen
,
O.
,
Davis
,
S.
,
Jacobs
,
G.
, and
Udaykumar
,
H. S.
,
2015
, “
Evaluation of Convergence Behavior of Metamodeling Techniques for Bridging Scales in Multi-Scale Multimaterial Simulation
,”
J. Comput. Phys.
,
294
, pp.
585
604
.
You do not currently have access to this content.