A quasi-Newton optimization routine and Grashof criteria for geared five-bar mechanisms are used to develop a Grashof five-bar mechanism synthesis routine. Sequential transformations mapping Grashof mechanism parameters satisfying sub-type specific upper and lower constraints are used. Convergence criteria of: (i) objective function value change, (ii) mechanism parameter change, and (iii) task satisfaction are used. These criteria, combined with search restarts, ensure the synthesis of an acceptable mechanism. Example results demonstrate the effectiveness of the routine.
Issue Section:
Technical Papers
1.
Fletcher, R., 1987, Practical Methods of Optimization, Second Edition, John Wiley & Sons, Toronto.
2.
Nolle
, K.
, and Hunt
, K. H.
, 1971
, “Optimum Synthesis of Planar Linkages to Generate Coupler Curves
,” J. Mec.
, 6
, pp. 267
–287
.3.
Kramer
, S. N.
, and Sandor
, G. N.
, 1975, “Selective Precision Synthesis—A General Method of Optimization for Planar Mechanisms,” ASME J. Eng. Ind., May, 689–701.4.
Angeles
, J.
, Alivizatos
, A.
, and Akhras
, R.
, 1988
, “An Unconstrained Nonlinear Least-Square Method of Optimization of RRRR Planar Path Generators
,” Mech. Mach. Theory
, 23
, No. 5
, pp. 343
–353
.5.
Akhras
, R.
, and Angeles
, J.
, 1990
, “Unconstrained Nonlinear Least-Square Optimization of Planar Linkages for Rigid-Body Guidance
,” Mech. Mach. Theory
, 25
, No. 1
, pp. 97
–118
.6.
Cossalter
, V.
, Doria
, A.
, Pasini
, M.
, and Scattolo
, C.
, 1992
, “A Simple Numerical Approach for Optimum Synthesis of a Class of Planar Mechanisms
,” Mech. Mach. Theory
, 27
, No. 3
, pp. 357
–366
.7.
Levitskii
, N. I.
, Sarkissyan
, Y. L.
, and Gekchian
, G. S.
, 1972
, “Optimum Synthesis of Four-Bar Function Generating Mechanisms
,” Mech. Mach. Theory
, 7
, pp. 387
–398
.8.
Angeles
, J.
, and Callejas
, M.
, 1984
, “An Algebraic Formulation of Grashof’s Mobility Criteria with Application to Linkage Optimization Using Gradient-Dependent Methods
,” ASME J. Mech., Transm., Autom. Des.
, 106
, pp. 327
–332
.9.
Krishnamurty
, S.
, and Turcic
, D. A.
, 1992
, “Optimal Synthesis of Mechanisms using Nonlinear Goal Programming Techniques
,” Mech. Mach. Theory
, 27
, No. 5
, pp. 599
–612
.10.
Paradis
, M. J.
, and Willmert
, K. D.
, 1983
, “Optimal Mechanism Design Using the Gauss Constrained Method
,” ASME J. Mech., Transm., Autom. Des.
, 105
, pp. 187
–196
.11.
Podhorodeski, R. P., and Fang, X., 1996, “Optimization-Based Grashof-Mechanism Synthesis Via Sub-Type Specific Parameter Transforms,” Proceedings of the 1996 ASME Design Engineering Technical Conferences and Computers in Engineering Conference, August 18–22, Irvine, California, 10 pp.
12.
Ullah
, I.
, and Kota
, S.
, 1997
, “Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods
,” ASME J. Mech. Des.
, 119
, pp. 504
–510
.13.
Martinez-Alfaro, H., Valdez, H., and Ortega, J., 1998, “Linkage Synthesis of a Four-Bar Mechanism for N Precision Points Using Simulated Annealing,” Proceedings of the 1998 ASME Design Engineering Technical Conferences, September 13–16, Atlanta, Georgia, 10 pp.
14.
Erdman, A. G., and Sandor, G. N., 1991, Mechanism Design: Analysis and Synthesis—Volume 1, Second Edition, Prentice Hall, Toronto.
15.
Ting
, K.-L.
, 1986
, “Five-Bar Grashof Criteria
,” ASME J. Mech., Transm., Autom. Des.
, 108
, pp. 533
–537
.16.
Ting
, K.-L.
, 1994
, “Mobility Criteria of Geared Five-Bar Linkages
,” Mech. Mach. Theory
, 29
, No. 2
, pp. 251
–254
.17.
Zwillinger, D., ed., 1996, CRC Standard Mathematical Tables and Formulas, 30th Edition, CRC Press, New York.
18.
Nokleby, S. B., and Podhorodeski, R. P., 2000, “Optimization-Based Synthesis of Grashof Geared Five-Bar Mechanisms,” Proceedings of the 2000 ASME Design Engineering Technical Conferences, September 10–13, Baltimore, Maryland, USA, 10 pages.
19.
Hanselman, D., and Littlefield, B., 1997, The Student Edition of MATLAB: Version 5, User’s Guide, Prentice Hall, Toronto.
Copyright © 2001
by ASME
You do not currently have access to this content.