A quasi-Newton optimization routine and Grashof criteria for geared five-bar mechanisms are used to develop a Grashof five-bar mechanism synthesis routine. Sequential transformations mapping Grashof mechanism parameters satisfying sub-type specific upper and lower constraints are used. Convergence criteria of: (i) objective function value change, (ii) mechanism parameter change, and (iii) task satisfaction are used. These criteria, combined with search restarts, ensure the synthesis of an acceptable mechanism. Example results demonstrate the effectiveness of the routine.

1.
Fletcher, R., 1987, Practical Methods of Optimization, Second Edition, John Wiley & Sons, Toronto.
2.
Nolle
,
K.
, and
Hunt
,
K. H.
,
1971
, “
Optimum Synthesis of Planar Linkages to Generate Coupler Curves
,”
J. Mec.
,
6
, pp.
267
287
.
3.
Kramer
,
S. N.
, and
Sandor
,
G. N.
, 1975, “Selective Precision Synthesis—A General Method of Optimization for Planar Mechanisms,” ASME J. Eng. Ind., May, 689–701.
4.
Angeles
,
J.
,
Alivizatos
,
A.
, and
Akhras
,
R.
,
1988
, “
An Unconstrained Nonlinear Least-Square Method of Optimization of RRRR Planar Path Generators
,”
Mech. Mach. Theory
,
23
, No.
5
, pp.
343
353
.
5.
Akhras
,
R.
, and
Angeles
,
J.
,
1990
, “
Unconstrained Nonlinear Least-Square Optimization of Planar Linkages for Rigid-Body Guidance
,”
Mech. Mach. Theory
,
25
, No.
1
, pp.
97
118
.
6.
Cossalter
,
V.
,
Doria
,
A.
,
Pasini
,
M.
, and
Scattolo
,
C.
,
1992
, “
A Simple Numerical Approach for Optimum Synthesis of a Class of Planar Mechanisms
,”
Mech. Mach. Theory
,
27
, No.
3
, pp.
357
366
.
7.
Levitskii
,
N. I.
,
Sarkissyan
,
Y. L.
, and
Gekchian
,
G. S.
,
1972
, “
Optimum Synthesis of Four-Bar Function Generating Mechanisms
,”
Mech. Mach. Theory
,
7
, pp.
387
398
.
8.
Angeles
,
J.
, and
Callejas
,
M.
,
1984
, “
An Algebraic Formulation of Grashof’s Mobility Criteria with Application to Linkage Optimization Using Gradient-Dependent Methods
,”
ASME J. Mech., Transm., Autom. Des.
,
106
, pp.
327
332
.
9.
Krishnamurty
,
S.
, and
Turcic
,
D. A.
,
1992
, “
Optimal Synthesis of Mechanisms using Nonlinear Goal Programming Techniques
,”
Mech. Mach. Theory
,
27
, No.
5
, pp.
599
612
.
10.
Paradis
,
M. J.
, and
Willmert
,
K. D.
,
1983
, “
Optimal Mechanism Design Using the Gauss Constrained Method
,”
ASME J. Mech., Transm., Autom. Des.
,
105
, pp.
187
196
.
11.
Podhorodeski, R. P., and Fang, X., 1996, “Optimization-Based Grashof-Mechanism Synthesis Via Sub-Type Specific Parameter Transforms,” Proceedings of the 1996 ASME Design Engineering Technical Conferences and Computers in Engineering Conference, August 18–22, Irvine, California, 10 pp.
12.
Ullah
,
I.
, and
Kota
,
S.
,
1997
, “
Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods
,”
ASME J. Mech. Des.
,
119
, pp.
504
510
.
13.
Martinez-Alfaro, H., Valdez, H., and Ortega, J., 1998, “Linkage Synthesis of a Four-Bar Mechanism for N Precision Points Using Simulated Annealing,” Proceedings of the 1998 ASME Design Engineering Technical Conferences, September 13–16, Atlanta, Georgia, 10 pp.
14.
Erdman, A. G., and Sandor, G. N., 1991, Mechanism Design: Analysis and Synthesis—Volume 1, Second Edition, Prentice Hall, Toronto.
15.
Ting
,
K.-L.
,
1986
, “
Five-Bar Grashof Criteria
,”
ASME J. Mech., Transm., Autom. Des.
,
108
, pp.
533
537
.
16.
Ting
,
K.-L.
,
1994
, “
Mobility Criteria of Geared Five-Bar Linkages
,”
Mech. Mach. Theory
,
29
, No.
2
, pp.
251
254
.
17.
Zwillinger, D., ed., 1996, CRC Standard Mathematical Tables and Formulas, 30th Edition, CRC Press, New York.
18.
Nokleby, S. B., and Podhorodeski, R. P., 2000, “Optimization-Based Synthesis of Grashof Geared Five-Bar Mechanisms,” Proceedings of the 2000 ASME Design Engineering Technical Conferences, September 10–13, Baltimore, Maryland, USA, 10 pages.
19.
Hanselman, D., and Littlefield, B., 1997, The Student Edition of MATLAB: Version 5, User’s Guide, Prentice Hall, Toronto.
You do not currently have access to this content.