A practical solution procedure for the forward kinematics problem of a fully-parallel planar three-legged platform with holonomic higher pairs is presented. Kinematic mapping is used to represent distinct planar displacements of the end-effector as discrete points in a three dimensional image space. Separate motions of each leg trace skew hyperboloids of one sheet in this space. Therefore, points of intersection of the three hyperboloids represent solutions to the forward kinematics problem. This reduces the problem to solving three simultaneous quadratics. Applications of the platform are discussed and an illustrative numerical example is given.

1.
Agrawal
S. K.
, and
Pandravada
R.
,
1992
, “
Inverse Kinematic Solutions of a Rolling Disk Between Two Planar Manipulators
,”
Robotic, Spatial Mechanisms, and Mechanical Systems
, ASME, DE-Vol.
45
, pp.
473
478
.
2.
Agrawal, S. K., and Pandravada, R., 1993, “Kinematics and Workspace of a Rolling Disk Between Planar Manipulators,” Proc. Am. Control Conf., San Francisco, CA, pp. 741–745.
3.
Angeles, J., 1997, Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, Springer-Verlag, New York, N.Y., p. 318.
4.
Blaschke
W.
,
1911
, “
Euklidische Kinematik und nichteuklidische Geometrie
,”
Zeitschr. Math. Phys.
, Vol.
60
, pp.
61
91
.
5.
Bottema, O., and Roth, B., 1990, Theoretical Kinematics, (originally published in 1979 by North-Holland Publishing Co., Amsterdam, as Vol. 24 of North-Holland Series in Applied Mathematics and Mechanics) Dover Publications, Inc., New York, N.Y.
6.
Chen
W.
, and
Kumar
V.
,
1995
, “
Workspace of Planar Cooperating Robots with Rolling Contacts
,”
Advanced Robotics
, The Int’l J. of the Robotics Soc. of Japan, Vol.
9
, No.
5
, pp.
483
504
.
7.
Cole, A., Hauser, J., and Sastry, S., 1988, “Kinematics and Control of Multifingered Hands with Rolling Contact,” Proc. of IEEE Int. Conf. on Rob. and Aut., pp. 228–233.
8.
Coxeter, H. S. M., 1969, Introduction to Geometry, second edition, John Wiley & Sons, Inc., Toronto, Ont., Canada.
9.
De Sa, S., 1979, “Classification and Properties of Planar Motion Using Kinematic Mappings,” Dissertation, Stanford University, Stanford, CA.
10.
De Sa
S.
,
Roth
B.
,
1981
, “
Kinematic Mappings. Part 1: Classification of Algebraic Motions in the Plane
,”
ASME JOURNAL OF MECHANICAL DESIGN
, Vol.
103
, pp.
585
591
.
11.
Gosselin, C., 1988, “Kinematic Analysis, Optimization and Programming of Parallel Robotic Manipulators,” Ph.D. thesis, Dept. of Mech. Eng., McGill University, Montre´al, Que´, Canada.
12.
Gosselin, C., and Sefrioui, J., 1991, “Polynomial Solutions for the Direct Kinematics Problem of Planar Parallel Three-Degree-of-Freedom Parallel Manipulators,” Proc. 5th Int. Conf. on Adv. Rob. (ICAR), Pisa, Italy, pp. 1124–1129.
13.
Gough, V. E., 1956, “Discussion in London; Automobile Stability, Control, and Tyre Performance,” Proc. Automobile Division, Institution of Mech. Engrs., pp. 392–394.
14.
Gru¨nwald
J.
,
1911
, “
Ein Abbildungsprinzip, welches die ebene Geometrie und Kinematik mit der ra¨umlihen Geometrie verknu¨pft
,”
Sitzber. Ak. Wiss. Wien
, Vol.
120
, pp.
677
741
.
15.
Hayes, M. J. D., Zsombor-Murray, P. J., 1996a, “A Planar Parallel Manipulator with Holonomic Higher Pairs: Inverse Kinematics,” Proc. CSME Forum 1996, Symposium on the Theory of Machines and Mechanisms, Hamilton, Ont., Canada, pp. 109–116.
16.
Hayes, M. J. D., Zsombor-Murray, P., 1996b, “Kinematic Mapping of 3-legged Planar Platforms With Holonomic Higher Pairs,” Recent Advances in Robotic Kinematics, eds. Lenarcˇicˇ, J., Parenti-Castelli, V., Kluwer Academic Publishers, Dordrecht, pp. 421–430.
17.
Hayes, M. J. D., and Zsombor-Murray, P., 1998, “Inverse Kinematics of a Planar Manipulator with Holonomic Higher Pairs,” Recent Advances in Robotic Kinematics, eds. Lenarcˇicˇ, Husty, M. L., Kluwer Academic Publishers, Dordrecht, pp. 59–68.
18.
Hui, R., and Goldenberg, A. A., 1989, “Formulation of the Hybrid Control Architecture Using the Constrained Manipulator Model-Application to Rolling Manipulation of a Rigid Object Using a Dextrous Robotic Hand,” Second Workshop on Military Robotic Applications, Kingston, Ont., Canada, pp. 316–323.
19.
Hunt, K. H., 1978, Kinematic Geometry of Mechanisms, Clarendon Press, Oxford, England.
20.
Hunt
K. H.
,
1983
, “
Structural Kinematics of In-Parallel-Actuated Robot Arms
,”
ASME Journal of Mechanisms, Transmissions, and Automation in Design
, Vol.
105
, No.
4
, pp.
705
712
.
21.
Husty, M. L., 1995, “Kinematic Mapping of Planar Three-Legged Platforms,” Proc. 15th Canadian Congress of Applied Mechanics, CANCAM 1995, Vol. 2, pp. 876–877.
22.
Husty, M. L., 1996a, “On The Workspace of Planar Three-legged Platforms,” Proc. World Automation Conf., 6th Int. Symposium on Rob. and Manuf. (ISRAM 1996), Montpellier, France, Vol. 3, pp. 339–344.
23.
Husty
M. L.
,
1996
b, “
An Algorithm for Solving the Direct Kinematics of General Stewart-Gough Platforms
,”
Mechanism and Machine Theory
, Vol.
31
, No.
4
, pp.
365
379
.
24.
Merlet, J-P., 1996, “Direct Kinematics of Planar Parallel Manipulators,” IEEE Int. Conf. on Robotics and Automation, Minneapolis, MN, pp. 3744–3749.
25.
Merlet, J-P., 1998, “Determination of the Presence of Singularities in 6-D Workspace of a Gough Parallel Manipulator,” Advances in Robot Kinematics: Analysis and Control, eds. Lenarcˇicˇ, J., Husty, M. L., Kluwer Academic Publishers, Dordrecht, pp. 39–48.
26.
Mimura
N.
, and
Funahashi
Y.
,
1992
, “
Kinematics of Planar Multifingered Robot Hand with Displacement of Contact Points
,”
JSME International Journal
, Series 3, Vol.
35
, No.
3
, pp.
462
469
.
27.
Murray, A. P., Pierrot, F., 1998, “N-Position Synthesis of Parallel Planar RPR Platforms,” Advances in Robot Kinematics: Analysis and Control, eds. Lenarcˇicˇ, J., Husty, M. L., Kluwer Academic Publishers, Dordrecht, pp. 69–78.
28.
Nielsen, J., and Roth, B., 1996, “The Direct Kinematics of the General 6-5 Stewart-Gough Mechanism,” Recent Advances in Robotic Kinematics, eds. Lenarcˇicˇ, J., Parenti-Castelli, V., Kluwer Academic Publishers, Dordrecht, pp. 7–16.
29.
Pennock
G. R.
, and
Kassner
D. J.
,
1992
, “
Kinematic Analysis of a Planar Eight-Bar Linkage: Application to a Platform-Type Robot
,”
ASME JOURNAL OF MECHANICAL DESIGN
, Vol.
114
, No.
1
, pp.
87
95
.
30.
Pennock
G. R.
, and
Kassner
D. J.
,
1993
, “
The Workspace of a General Geometry Planar Three-Degree-of-Freedom Platform-Type Manipulator
,”
ASME JOURNAL OF MECHANICAL DESIGN
, Vol.
115
, pp.
269
276
.
31.
Ravani, B., 1982, “Kinematic Mappings as Applied to Motion Approximation and Mechanism Synthesis,” Dissertation, Stanford University, Stanford, CA.
32.
Ravani
B.
, and
Roth
B.
,
1983
, “
Motion Synthesis Using Kinematic Mappings
,”
ASME Journal of Mechanisms, Transmissions, and Automation in Design
, Vol.
105
, pp.
460
467
.
33.
Rooney, J., and Earle, C. F., 1983, “Manipulator Postures and Kinematics Assembly Configurations,” 6th World Congress on Theory of Machines and Mechanisms, New Delhi, pp. 1014–1020.
34.
Salisbury
J. K.
, and
Roth
B.
,
1983
, “
Kinematic and Force Analysis of Articulated Mechanical Hands
,”
ASME Journal of Mechanisms Transmissions and Automation in Design
, Vol.
105
, pp.
35
41
.
35.
Salmon, G., 1885, Lessons Introductory to the Modern Higher Algebra, fourth edition, Hodges, Foster, and Figgis, Dublin, Ireland.
36.
Shirkhodaie, A. H., and Soni, A. H., 1987, “Forward and Inverse Synthesis for a Robot with Three Degrees of Freedom,” 19th Summer Computation Simulation Conference, Montre´al, Que´bec, Canada, pp. 851–856.
37.
Stewart
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Institution of Mech. Engrs.
, Vol.
180
, Part 1, No.
15
, pp.
371
378
.
38.
Wohlhart, K., 1992, “Direct Kinematic Solution of the General Planar Stewart Platform,” Proc. of the Int. Conf. on Comp. Int. Manu., Zakopane, pp. 403–411.
39.
Yun, X., Kumar, V., Sarkar, N., Paljug, E., 1992, “Control of Multiple Arms with Rolling Constraints,” Proc. of IEEE Int. Conf. Rob. Aut., Nice, France, pp. 2193–2198.
This content is only available via PDF.
You do not currently have access to this content.