Abstract

This study details the derivation of a length correction term for computing the heat transfer performance of one-dimensional, straight, convecting-tip fins using the insulated-tip fin solution. Use of this corrected length in the insulated-tip fin solution produces the identical heat transfer rate and temperature profile as those computed using the more complex convecting-tip fin equations. The analysis derives the length correction equation from fundamental principles and produces a simple, closed-form expression valid for all fin cross-sectional shapes. Furthermore, the valid parameter range where this length correction is applicable, and outside of which no exact length correction is possible, is quantified.

References

1.
Harper
,
D. R.
, 3rd.
, and
Brown
,
W. B.
,
1923
, “
Mathematical Equations for Heat Conduction in the Fins of Air-Cooled Engines
,” NACA Report No.
158.
https://ntrs.nasa.gov/citations/19930091223
2.
Kraus
,
A. D.
,
Aziz
,
A.
, and
Welty
,
J.
,
2001
,
Extended Surface Heat Transfer
,
Wiley Inc
.,
New York
, pp.
60
81
.10.1002/9780470172582
3.
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2017
,
Fundamentals of Heat and Mass Transfer
, 8th ed.,
Wiley Inc
.,
New York
, pp.
147
156
.
4.
Schneider
,
P. J.
,
1957
,
Conduction Heat Transfer
,
Addison-Wesley Publishing Co., Inc
.,
Reading, MA
, pp.
67
73
.
5.
Look
,
D. C.
, Jr.
,
1997
, “
1-D Fin Tip Boundary Condition Corrections
,”
Heat Transfer Eng.
,
18
(
2
), pp.
46
49
.10.1080/01457639708939895
6.
Look
,
D. C.
, Jr.
, and
Krishnan
,
A.
,
2001
, “
One-Dimensional Fin-Tip Boundary Condition Correction II
,”
Heat Transfer Eng.
,
22
(
5
), pp.
35
40
.10.1080/01457630152496304
7.
Mao
,
J.
, and
Rooke
,
S.
,
1994
, “
Transient Analysis of Extended Surfaces With Convective Tip
,”
Int. Commun. Heat Mass Transfer
,
21
(
1
), pp.
85
94
.10.1016/0735-1933(94)90086-8
You do not currently have access to this content.