Abstract

This study experimentally and numerically investigates the hydrodynamic characteristics and heat transfer of developing and fully developed laminar liquid–liquid Taylor flows. The problem is conducted in circular mini-channels with different diameters subjected to a constant wall temperature boundary condition. An experimental setup is designed employing an open-loop water/oil two-phase nonboiling flow at mini-scale tubing sizes of 1.42, 1.52, and 1.65 mm. Two silicone oils with the dynamic viscosities of 1 and 5 cSt at several volumetric flow rates are used to establish segmented flow. The impacts of the channel diameter, viscosity, and flow rate ratio on the flow pattern, pressure drop, film thickness, and heat transfer rate are discussed. In good agreement with the literature, it is found that the pressure drop generated by the interface increases the total pressure loss by up to 200% compared to the single-phase flow. The results also explain how recirculating regions within the slugs influence the film region and the physics of backflow. Furthermore, introducing segmented water slugs significantly enhances the heat transfer rate as the dimensionless thermal length decreases. A significant relation between the recirculating regions and heat transfer has been demonstrated for the first time.

References

1.
Kreutzer
,
M. T.
,
Kapteijn
,
F.
,
Moulijn
,
J. A.
, and
Heiszwolf
,
J. J.
,
2005
, “
Multiphase Monolith Reactors: Chemical Reaction Engineering of Segmented Flow in Microchannels
,”
Chem. Eng. Sci.
,
60
(
22
), pp.
5895
5916
.10.1016/j.ces.2005.03.022
2.
Dai
,
Z.
,
Guo
,
Z.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2015
, “
Taylor Flow Heat Transfer in Microchannels—Unification of Liquid-Liquid and Gas-Liquid Results
,”
Chem. Eng. Sci.
,
138
, pp.
140
152
.10.1016/j.ces.2015.08.012
3.
Abdollahi
,
A.
,
Norris
,
S. E.
, and
Sharma
,
R. N.
,
2020
, “
Fluid Flow and Heat Transfer of Liquid-Liquid Taylor Flow in Square Microchannels
,”
Appl. Therm. Eng.
,
172
, p.
115123
.10.1016/j.applthermaleng.2020.115123
4.
Cao
,
Y.
,
Soares
,
C.
,
Padoin
,
N.
, and
Noël
,
T.
,
2021
, “
Gas Bubbles Have Controversial Effects on Taylor Flow Electrochemistry
,”
Chem. Eng. J.
,
406
, p.
126811
.10.1016/j.cej.2020.126811
5.
Wu
,
C.
,
Tang
,
K.
,
Gu
,
B.
,
Deng
,
J.
,
Liu
,
Z.
, and
Wu
,
Z.
,
2016
, “
Concentration-Dependent Viscous Mixing in Microfluidics: Modelings and Experiments
,”
Microfluid. Nanofluid.
,
20
(
6
), p.
90
.10.1007/s10404-016-1755-9
6.
Cao
,
Y.
,
Padoin
,
N.
,
Soares
,
C.
, and
Noël
,
T.
,
2022
, “
On the Performance of Liquid-Liquid Taylor Flow Electrochemistry in a Microreactor–a CFD Study
,”
Chem. Eng. J.
,
427
, p.
131443
.10.1016/j.cej.2021.131443
7.
Pang
,
Z.
,
Zhu
,
C.
,
Ma
,
Y.
, and
Fu
,
T.
,
2020
, “
CO2 Absorption by Liquid Films Under Taylor Flow in Serpentine Minichannels
,”
Ind. Eng. Chem. Res.
,
59
(
26
), pp.
12250
12261
.10.1021/acs.iecr.0c02217
8.
Osorio-Nesme
,
A.
,
Rauh
,
C.
, and
Delgado
,
A.
,
2012
, “
Flow Rectification and Reversal Mass Flow in Printed Periodical Microstructures
,”
Eng. Appl. Comput. Fluid Mech.
,
6
(
2
), pp.
285
294
.10.1080/19942060.2012.11015421
9.
Yao
,
C.
,
Chen
,
G.
, and
Yuan
,
Q.
,
2019
, “
Mass Transfer Characteristics of Gas-Liquid Two-Phase Flow in Microchannels and Applications
,”
CIESC J.
,
70
(
10
), pp.
3635
3644
.10.11949/0438-1157.20190710
10.
Takeshita
,
K.
,
2010
, “
Development of Liquid-Liquid Countercurrent Centrifugal Extractor With Taylor-Couette Flow
,”
Japanese J. Multiphase Flow
,
24
(
3
), pp.
267
274
.10.3811/jjmf.24.267
11.
Mohmmed
,
A. O.
,
Al-Kayiem
,
H. H.
, and
Osman
,
A. B.
,
2021
, “
Investigations on the Slug Two-Phase Flow in Horizontal Pipes: Past, Presents, and Future Directives
,”
Chem. Eng. Sci.
,
238
, p.
116611
.10.1016/j.ces.2021.116611
12.
Elvira
,
K. S.
,
I Solvas
,
X. C.
,
Wootton
,
R. C. R.
, and
de Mello
.
A. J.
,
2013
, “
The Past, Present and Potential for Microfluidic Reactor Technology in Chemical Synthesis
,”
Nat. Chem.
,
5
(
11
), pp.
905
915
.10.1038/nchem.1753
13.
Zhang
,
J.
,
Lei
,
L.
,
Liang
,
F.
,
Li
,
H.
,
Sundén
,
B.
, and
Wu
,
Z.
,
2020
, “
An Improved Method to Visualize Two Regions of Interest Synchronously in Microfluidics
,”
Flow Meas. Instrum.
,
72
, p.
101715
.10.1016/j.flowmeasinst.2020.101715
14.
Rahmandhika
,
A.
,
Widyatama
,
A.
,
Dinaryanto
,
O.
,
Widyaparaga
,
A.
, and
Deendarlianto
,
Indarto
,
2019
, “
Experimental Study on the Hydrodynamic Behavior of Gas-Liquid Air-Water Two-Phase Flow Near the Transition to Slug Flow in Horizontal Pipes
,”
Int. J. Heat Mass Transfer
,
130
, pp.
187
203
.10.1016/j.ijheatmasstransfer.2018.10.085
15.
Lim
,
A. E.
,
Lim
,
C. Y.
,
Lam
,
Y. C.
, and
Lim
,
Y. H.
,
2019
, “
Effect of Microc hannel Junction Angle on Two-Phase Liquid-Gas Taylor Flow
,”
Chem. Eng. Sci.
,
202
, pp.
417
428
.10.1016/j.ces.2019.03.044
16.
Li
,
H. W.
,
Wang
,
Y. C.
,
Hong
,
W. P.
,
Sun
,
B.
, and
Zhou
,
Y. L.
,
2020
, “
Analysis of Parallel Mini-Channels' Complex Flow Boiling and Dryout Dynamics Based on the Pressure Drop Signals
,”
Exp. Therm. Fluid Sci.
,
110
, p.
109944
.10.1016/j.expthermflusci.2019.109944
17.
Komrakova
,
A. E.
,
Shardt
,
O.
,
Eskin
,
D.
, and
Derksen
,
J. J.
,
2014
, “
Lattice Boltzmann Simulations of Drop Deformation and Breakup in Shear Flow
,”
Int. J. Multiphase Flow
,
59
, pp.
24
43
.10.1016/j.ijmultiphaseflow.2013.10.009
18.
Patel
,
R. S.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2017
, “
Characterization of Liquid Film Thickness in Slug-Regime Microchannel Flows
,”
Int. J. Heat Mass Transfer
,
115
, pp.
1137
1143
.10.1016/j.ijheatmasstransfer.2017.08.008
19.
Qian
,
J. Y.
,
Chen
,
M. R.
,
Wu
,
Z.
,
Jin
,
Z. J.
, and
Sunden
,
B.
,
2019
, “
Effects of a Dynamic Injection Flow Rate on Slug Generation in a Cross-Junction Square Microchannel
,”
Processes
,
7
(
10
), p.
765
.10.3390/pr7100765
20.
Walsh
,
E.
,
Muzychka
,
Y. S.
,
Walsh
,
P.
,
Egan
,
V.
, and
Punch
,
J.
,
2009
, “
Pressure Drop in Two Phase Slug/Bubble Flows in Mini Scale Capillaries
,”
Int. J. Multiphase Flow
,
35
(
10
), pp.
879
884
.10.1016/j.ijmultiphaseflow.2009.06.007
21.
Jovanović
,
J.
,
Zhou
,
W.
,
Rebrov
,
E. V.
,
Nijhuis
,
T. A.
,
Hessel
,
V.
, and
Schouten
,
J. C.
,
2011
, “
Liquid-Liquid Slug Flow: Hydrodynamics and Pressure Drop
,”
Chem. Eng. Sci.
,
66
(
1
), pp.
42
54
.10.1016/j.ces.2010.09.040
22.
Yao
,
C.
,
Ma
,
H.
,
Zhao
,
Q.
,
Liu
,
Y.
,
Zhao
,
Y.
, and
Chen
,
G.
,
2020
, “
Mass Transfer in Liquid-Liquid Taylor Flow in a Microchannel: Local Concentration Distribution, Mass Transfer Regime and the Effect of Fluid Viscosity
,”
Chem. Eng. Sci.
,
223
, p.
115734
.10.1016/j.ces.2020.115734
23.
Vasilev
,
M. P.
,
Rusakov
,
B. A.
, and
Abiev
,
R. S.
,
2022
, “
Gas-Liquid Slug Flow in Microfluidic Heat Exchanger: Effect of Gas Hold-Up and Bubble Size on Pressure Drop and Heat Transfer
,”
Int. J. Therm. Sci.
,
173
, p.
107395
.10.1016/j.ijthermalsci.2021.107395
24.
Angeli
,
P.
, and
Gavriilidis
,
A.
,
2008
, “
Hydrodynamics of Taylor Flow in Small Channels: A Review
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
222
(
5
), pp.
737
751
.10.1243/09544062JMES776
25.
Gupta
,
R.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2010
, “
Taylor Flow in Microchannels: A Review of Experimental and Computational Work
,”
J. Comput. Multiphase Flows
,
2
(
1
), pp.
1
31
.10.1260/1757-482X.2.1.1
26.
Talimi
,
V.
,
Muzychka
,
Y. S.
, and
Kocabiyik
,
S.
,
2012
, “
A Review on Numerical Studies of Slug Flow Hydrodynamics and Heat Transfer in Microtubes and Microchannels
,”
Int. J. Multiphase Flow
,
39
, pp.
88
104
.10.1016/j.ijmultiphaseflow.2011.10.005
27.
Bandara
,
T.
,
Nguyen
,
N. T.
, and
Rosengarten
,
G.
,
2015
, “
Slug Flow Heat Transfer Without Phase Change in Microchannels: A Review
,”
Chem. Eng. Sci.
,
126
, pp.
283
295
.10.1016/j.ces.2014.12.007
28.
Etminan
,
A.
,
Muzychka
,
Y. S.
, and
Pope
,
K.
,
2021
, “
A Review on the Hydrodynamics of Taylor Flow in Microchannels: Experimental and Computational Studies
,”
Processes
,
9
(
5
), p.
870
.10.3390/pr9050870
29.
Etminan
,
A.
,
Muzychka
,
Y. S.
, and
Pope
,
K.
,
2022
, “
Liquid Film Thickness of Two‐Phase Slug Flows in Capillary Microchannels: A Review Paper
,”
Can. J. Chem. Eng.
,
100
(
2
), pp.
325
348
.10.1002/cjce.24068
30.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.http://54.243.252.9/engr-1330-webroot/6-Projects/PInstrumentCalibration/Kline_McClintock1953.pdf
31.
Muzychka
,
Y. S.
,
Walsh
,
E.
, and
Walsh
,
P.
,
2010
, “
Simple Models for Laminar Thermally Developing Slug Flow in Noncircular Ducts and Channels
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
132
(
11
), p.
111702
.10.1115/1.4002095
32.
Churchill
,
S. W.
, and
Usagi
,
R.
,
1972
, “
A General Expression for the Correlation of Rates of Transfer and Other Phenomena
,”
AIChE J.
,
18
(
6
), pp.
1121
1128
.10.1002/aic.690180606
33.
Muzychka
,
Y. S.
,
Walsh
,
E. J.
, and
Walsh
,
P.
,
2011
, “
Heat Transfer Enhancement Using Laminar Gas-Liquid Segmented Plug Flows
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
133
(
4
), p.
041902
.10.1115/1.4002807
34.
Muzychka
,
Y. S.
,
2014
, “
Laminar Heat Transfer for Gas-Liquid Segmented Flows in Circular and Non-Circular Ducts With Constant Wall Temperature
,”
ASME
Paper No. ICNMM2014-21087
.10.1115/ICNMM2014-21087
35.
Alrbee
,
K.
,
Muzychka
,
Y.
, and
Duan
,
X.
,
2022
, “
Heat Transfer in Laminar Graetz and Taylor Flows Incorporating Nanoparticles
,”
Heat Transfer Eng.
,
43
(
12
), pp.
975
990
.10.1080/01457632.2021.1932034
36.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
37.
Triplett
,
K. A.
,
Ghiaasiaan
,
S. M.
,
Abdel-Khalik
,
S. I.
, and
Sadowski
,
D. L.
,
1999
, “
Gas-Liquid Two-Phase Flow in Microchannels Part I: Two-Phase Flow Patterns
,”
Int. J. Multiphase Flow
,
25
(
3
), pp.
377
394
.10.1016/S0301-9322(98)00054-8
38.
Brauner
,
N.
, and
Maron
,
D. M.
,
1992
, “
Identification of the Range of ‘Small Diameters’ Conduits, Regarding Two-Phase Flow Pattern Transitions
,”
Int. Commun. Heat Mass Transfer
,
19
(
1
), pp.
29
39
.10.1016/0735-1933(92)90061-L
39.
Gupta
,
R.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2009
, “
On the CFD Modelling of Taylor Flow in Microchannels
,”
Chem. Eng. Sci.
,
64
(
12
), pp.
2941
2950
.10.1016/j.ces.2009.03.018
40.
Sontti
,
S. G.
, and
Atta
,
A.
,
2017
, “
CFD Analysis of Taylor Bubble in a Co-Flow Microchannel With Newtonian and Non-Newtonian Liquid
,”
Ind. Eng. Chem. Res.
,
56
(
25
), pp.
7401
7412
.10.1021/acs.iecr.7b01244
41.
Etminan
,
A.
,
Muzychka
,
Y. S.
, and
Pope
,
K.
,
2021
, “
Film Thickness and Pressure Drop for Gas-Liquid Taylor Flow in Microchannels
,”
J. Fluid Flow, Heat Mass Transfer
,
8
(
1
), pp.
59
70
.10.11159/jffhmt.2021.008
42.
Etminan
,
A.
,
Muzychka
,
Y. S.
, and
Pope
,
K.
,
2022
, “
Numerical Investigation of Gas-Liquid and Liquid-Liquid Taylor Flow Through a Circular Microchannel With a Sudden Expansion
,”
Can. J. Chem. Eng.
,
100
(
7
), pp.
1596
1612
.10.1002/cjce.24229
43.
Bretherton
,
F. P.
,
1961
, “
The Motion of Long Bubbles in Tubes
,”
J. Fluid Mech.
,
10
(
02
), pp.
166
188
.10.1017/S0022112061000160
44.
Aussillous
,
P.
, and
Quéré
,
D.
,
2000
, “
Quick Deposition of a Fluid on the Wall of a Tube
,”
Phys. Fluids
,
12
(
10
), pp.
2367
2371
.10.1063/1.1289396
45.
Kreutzer
,
M. T.
,
Du
,
P.
,
Heiszwolf
,
J. J.
,
Kapteijn
,
F.
, and
Moulijn
,
J. A.
,
2001
, “
Mass Transfer Characteristics of Three-Phase Monolith Reactors
,”
Chem. Eng. Sci.
,
56
(
21–22
), pp.
6015
6023
.10.1016/S0009-2509(01)00271-8
46.
Eain
,
M. M. G.
,
Egan
,
V.
,
Howard
,
J.
,
Walsh
,
P.
,
Walsh
,
E.
, and
Punch
,
J.
,
2015
, “
Review and Extension of Pressure Drop Models Applied to Taylor Flow Regimes
,”
Int. J. Multiphase Flow
,
68
, pp.
1
9
.10.1016/j.ijmultiphaseflow.2014.09.006
47.
Fairbrother
,
F.
, and
Stubbs
,
A. E.
,
1935
, “
Studies in Electro-Endosmosis. Part VI. The “Bubble-Tube” Method of Measurement
,”
J. Chem. Soc.
,
0
(
0
), pp.
527
529
.10.1039/JR9350000527
48.
Huerre
,
A.
,
Theodoly
,
O.
,
Leshansky
,
A. M.
,
Valignat
,
M. P.
,
Cantat
,
I.
, and
Jullien
,
M. C.
,
2015
, “
Droplets in Microchannels: Dynamical Properties of the Lubrication Film
,”
Phys. Rev. Lett.
,
115
(
6
), p.
064501
.10.1103/PhysRevLett.115.064501
49.
Landau
,
L.
, and
Levich
,
B.
,
1988
, “
Dragging of a Liquid by a Moving Plate
,”
Dynamics of Cutved Fronts
, pp.
141
–153
.10.1016/B978-0-08-092523-3.50016-2
50.
Giavedoni
,
M. D.
, and
Saita
,
F. A.
,
1997
, “
The Axisymmetric and Plane Cases of a Gas Phase Steadily Displacing a Newtonian Liquid—a Simultaneous Solution of the Governing Equations
,”
Phys. Fluids
,
9
(
8
), pp.
2420
2428
.10.1063/1.869360
51.
Fujioka
,
H.
, and
Grotberg
,
J. B.
,
2004
, “
Steady Propagation of a Liquid Plug in a Two-Dimensional Channel
,”
ASME J. Biomech. Eng.
,
126
(
5
), pp.
567
577
.10.1115/1.1798051
52.
Habibi Matin
,
M.
, and
Moghaddam
,
S.
,
2021
, “
On the Extension of Bretherton Theory for Thin Liquid Films Formed Around Elongated Bubbles
,”
Phys. Fluids
,
33
(
12
), p.
123303
.10.1063/5.0073966
53.
Kreutzer
,
M. T.
,
Kapteijn
,
F.
,
Moulijn
,
J. A.
,
Kleijn
,
C. R.
, and
Heiszwolf
,
J. J.
,
2005
, “
Inertial and Interfacial Effects on Pressure Drop of Taylor Flow in Capillaries
,”
AIChE J.
,
51
(
9
), pp.
2428
2440
.10.1002/aic.10495
54.
Marchessault
,
R. N.
, and
Mason
,
S. G.
,
1960
, “
Flow of Entrapped Bubbles Through a Capillary
,”
Ind. Eng. Chem.
,
52
(
1
), pp.
79
84
.10.1021/ie50601a051
55.
Klaseboer
,
E.
,
Gupta
,
R.
, and
Manica
,
R.
,
2014
, “
An Extended Bretherton Model for Long Taylor Bubbles at Moderate Capillary Numbers
,”
Phys. Fluids
,
26
(
3
), p.
032107
.10.1063/1.4868257
56.
Adrugi
,
W.
,
Muzychka
,
Y. S.
, and
Pope
,
K.
,
2016
, “
Pressure Drop of Liquid-Liquid Taylor Flow in Mini-Scale Tubing
,”
ASME
Paper No. IMECE2016-67736.10.1115/IMECE2016-67736
57.
McAdams
,
W. H.
, Woods, W. K., and Herman Jr., L. C.,
1942
, “
Vaporization Inside Horizontal Tubes-II, Benzene Oil Mixtures
,”
Trans. ASME
,
64
(
3
), pp.
193
199
.10.1115/1.4019013
You do not currently have access to this content.