Abstract

An oscillating heat pipe with check valves (CVOHP) is an attractive heat transfer device for future spacecraft with considerable heat dissipation and ground applications. This study aims to clarify the effect of the flow resistance of floating-type check valves on the heat transfer characteristics of the CVOHP using a one-dimensional slug flow model, which simulates the five-turn CVOHP used in the on-orbit experiment by the authors. The numerical simulations were conducted for different flow resistances, positions, and numbers of check valves. The results showed that the thermal resistance of the CVOHP increases with the flow resistance of the check valves, while there is no significant effect on the startup characteristics. The thermal resistance increased by more than 100% in the worst case, and the recommended flow resistance coefficient of the check valve was below 100 in this study for high thermal performance. The thermal resistance increases with an increasing number of high-resistance check valves but is less affected by the position of the valve. Additionally, the higher the heat input, the greater the effect of the flow resistance of the check valves. According to the findings in this study, it is necessary to control the flow resistance of the floating-type check valves at a low level for the high thermal performance of a CVOHP.

References

1.
Akachi
,
H.
,
1990
, “
Structure of a Heat Pipe
,” U.S. Patent No. 4921041.
2.
Akachi
,
H.
,
1993
, “
Structure of Micro-Heat Pipe
,” U.S. Patent No. 5219020.
3.
Zhang
,
Y.
, and
Faghri
,
A.
,
2008
, “
Advances and Unsolved Issues in Pulsating Heat Pipes
,”
Heat Transfer Eng.
,
29
(
1
), pp.
20
44
.10.1080/01457630701677114
4.
Ma
,
H.
,
2015
,
Oscillating Heat Pipes
,
Springer
,
New York
.
5.
Miyazaki
,
Y.
, and
Arikawa
,
M.
,
1999
, “
Oscillatory Flow in Oscillating Heat Pipe
,”
Proceedings of the 11th International Heat Pipe Conference
,
Tokyo, Japan
, Sept. 12–16, pp.
367
372
.
6.
Daimaru
,
T.
,
Yoshida
,
S.
, and
Nagai
,
H.
,
2017
, “
Study on Thermal Cycle in Oscillating Heat Pipes by Numerical Analysis
,”
Appl. Therm. Eng.
,
113
, pp.
1219
1227
.10.1016/j.applthermaleng.2016.11.114
7.
Miyazaki
,
Y.
,
Polasek
,
H.
, and
Akachi
,
H.
,
2000
, “
Oscillating Heat Pipe With Check Valves
,”
Proceedings of the 6th International Heat Pipe Symposium
,
Chiang Mai, Thailand
, Nov. 5–9, pp.
389
394
.
8.
Iwata
,
N.
,
Ogawa
,
H.
, and
Miyazaki
,
Y.
,
2016
, “
Maximum Heat Transfer and Operating Temperature of Oscillating Heat Pipe
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
138
(
12
), p.
122002
.10.1115/1.4034054
9.
Rittidech
,
S.
,
Pipatpaiboon
,
N.
, and
Terdtoon
,
P.
,
2007
, “
Heat-Transfer Characteristics of a Closed-Loop Oscillating Heat-Pipe With Check Valves
,”
Appl. Energy
,
84
(
5
), pp.
565
577
.10.1016/j.apenergy.2006.09.010
10.
Rittidech
,
S.
,
Pipatpaiboon
,
N.
, and
Thongdaeng
,
S.
,
2010
, “
Thermal Performance of Horizontal Closed-Loop Oscillating Heat-Pipe With Check Valves
,”
J. Mech. Sci. Technol.
,
24
(
2
), pp.
545
550
.10.1007/s12206-009-1221-7
11.
Maeda
,
M.
,
Okamoto
,
A.
,
Kawasaki
,
H.
, and
Sugita
,
H.
,
2011
, “
Development of Flat Plate Heat Pipe and the Project of On-Orbit Experiment
,” AIAA Paper No. 2011–5142.10.2514/6.2011-5142
12.
Ando
,
M.
,
Okamoto
,
A.
, and
Sugita
,
H.
,
2014
, “
Evaluation of Heat Transfer Characteristics of Flat-Plate Heat Pipe With Check Valves
,”
Proceedings of Multiphase Flow Symposium 2014, Japanese Society for Multiphase Flow
,
Sapporo, Japan
, July 28–30, Paper No. B122 (in Japanese).
13.
Ando
,
M.
,
Okamoto
,
A.
,
Tanaka
,
K.
,
Maeda
,
M.
,
Sugita
,
H.
,
Daimaru
,
T.
, and
Nagai
,
H.
,
2018
, “
On-Orbit Demonstration of Oscillating Heat Pipe With Check Valves for Space Application
,”
Appl. Therm. Eng.
,
130
, pp.
552
560
.10.1016/j.applthermaleng.2017.11.032
14.
Daimaru
,
T.
,
Inoue
,
N.
,
Nagai
,
H.
,
Ando
,
M.
,
Tanaka
,
K.
,
Okamoto
,
A.
,
Sugita
,
H.
, and
Isohata
,
D.
,
2017
, “
Numerical Study on Startup Characteristics of Oscillating Heat Pipes With Check Valves
,”
Proceedings of the 47th International Conference on Environmental Systems
,
Charleston, SC
, July 16–20, Paper No. ICES-2017-149.http://hdl.handle.net/2346/72963
15.
Ando
,
M.
,
Okamoto
,
A.
, and
Nagai
,
H.
,
2021
, “
Start-Up and Heat Transfer Characteristics of Oscillating Heat Pipe With Different Check Valve Layouts
,”
Appl. Therm. Eng.
,
196
, p.
117286
.10.1016/j.applthermaleng.2021.117286
16.
Okazaki
,
S.
,
Fuke
,
H.
,
Ogawa
,
H.
,
Miyazaki
,
Y.
,
Takahashi
,
K.
, and
Yamada
,
N.
,
2018
, “
Meter-Scale Multi-Loop Capillary Heat Pipe
,”
Appl. Therm. Eng.
,
141
, pp.
20
28
.10.1016/j.applthermaleng.2018.05.116
17.
Iwata
,
N.
,
Saitoh
,
M.
,
Yanagase
,
K.
,
Iso
,
Y.
,
Inoue
,
Y.
,
Ogawa
,
H.
, and
Miyazaki
,
Y.
,
2022
, “
Thermal and Structural Performance of a Small Satellite With Networked Oscillating Heat Pipes
,”
J. Spacecr. Rockets
,
59
(
3
), pp.
1016
1028
.10.2514/1.A35242
18.
Feng
,
C.
,
Wan
,
Z.
,
Mo
,
H.
,
Tang
,
H.
,
Lu
,
L.
, and
Tang
,
Y.
,
2018
, “
Heat Transfer Characteristics of a Novel Closed-Loop Pulsating Heat Pipe With a Check Valve
,”
Appl. Therm. Eng.
,
141
, pp.
558
564
.10.1016/j.applthermaleng.2018.06.010
19.
Wan
,
Z.
,
Wang
,
X.
, and
Feng
,
C.
,
2020
, “
Heat Transfer Performances of the Capillary Loop Pulsating Heat Pipes With Spring-Loaded Check Valve
,”
Appl. Therm. Eng.
,
167
, p.
114803
.10.1016/j.applthermaleng.2019.114803
20.
Thompson
,
S. M.
, and
Ma
,
H. B.
,
2012
, “
A Statistical Analysis of Temperature Oscillations on a Flat-Plate Oscillating Heat Pipe With Tesla-Type Check Valves
,”
Front. Heat Pipes
,
2
(
3
), p.
033002
.10.5098/fhp.v2.3.3002
21.
Thompson
,
S. M.
,
Ma
,
H. B.
, and
Wilson
,
C.
,
2011
, “
Investigation of a Flat-Plate Oscillating Heat Pipe With Tesla-Type Check Valves
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1265
1273
.10.1016/j.expthermflusci.2011.04.014
22.
de Vries
,
S. F.
,
Florea
,
D.
,
Homburg
,
F. G. A.
, and
Frijns
,
A. J. H.
,
2017
, “
Design and Operation of a Tesla-Type Valve for Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
105
, pp.
1
11
.10.1016/j.ijheatmasstransfer.2016.09.062
23.
Wits
,
W. W.
,
Groeneveld
,
G.
, and
van Gerner
,
H. J.
,
2019
, “
Experimental Investigation of a Flat-Plate Closed-Loop Pulsating Heat Pipe
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
9
), p.
091807
.10.1115/1.4042367
24.
Ebrahimi
,
M.
,
Shafii
,
M. B.
, and
Bijarchi
,
M. A.
,
2015
, “
Experimental Investigation of the Thermal Management of Flat-Plate Closed-Loop Pulsating Heat Pipes With Interconnecting Channels
,”
Appl. Therm. Eng.
,
90
, pp.
838
847
.10.1016/j.applthermaleng.2015.07.040
25.
Hu
,
M.
,
Du
,
H.
,
Ling
,
S.
,
Fu
,
Y.
,
Chen
,
Q.
,
Chow
,
L.
, and
Li
,
B.
,
2004
, “
A Silicon-On-Insulator Based Micro Check Valve
,”
J. Micromech. Microeng.
,
14
(
3
), pp.
382
387
.10.1088/0960-1317/14/3/010
26.
Veenstra
,
T. T.
,
Venhorst
,
G. C. F.
,
Burger
,
J. F.
,
Holland
,
H. J.
,
ter Brake
,
H. J. M.
,
Sirbi
,
A.
, and
Rogalla
,
H.
,
2007
, “
Development of a Stainless Steel Check Valve for Cryogenic Applications
,”
Cryogenics
,
47
(
2
), pp.
121
126
.10.1016/j.cryogenics.2006.10.004
27.
Filo
,
G.
,
Lisowski
,
E.
, and
Rajda
,
J.
,
2021
, “
Design and Flow Analysis of an Adjustable Check Valve by Means of CFD Method
,”
Energies
,
14
(
8
), p.
2237
.10.3390/en14082237
28.
Daimaru
,
T.
,
Nagai
,
H.
,
Ando
,
M.
,
Tanaka
,
K.
,
Okamoto
,
A.
, and
Sugita
,
H.
,
2017
, “
Comparison Between Numerical Simulation and On-Orbit Experiment of Oscillating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
109
, pp.
791
806
.10.1016/j.ijheatmasstransfer.2017.01.078
29.
Nekrashevych
,
I.
, and
Nikolayev
,
V. S.
,
2019
, “
Pulsating Heat Pipe Simulations: Impact of PHP Orientation
,”
Microgravity Sci. Technol.
,
31
(
3
), pp.
241
248
.10.1007/s12217-019-9684-3
30.
Jo
,
J.
,
Kim
,
J.
, and
Kim
,
S. J.
,
2019
, “
Experimental Investigations of Heat Transfer Mechanisms of a Pulsating Heat Pipe
,”
Energy Convers. Manage.
,
181
, pp.
331
341
.10.1016/j.enconman.2018.12.027
31.
Charoensawan
,
P.
, and
Terdtoon
,
P.
,
2008
, “
Thermal Performance of Horizontal Closed-Loop Oscillating Heat Pipes
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
460
466
.10.1016/j.applthermaleng.2007.05.007
You do not currently have access to this content.