Abstract

Harnessing concentrated high-flux solar energy to drive thermal processes over 1000 °C for fuel production and material processing has great potential to address environmental issues associated with fossil fuels. There is now also interest in solar thermal processing under extraterrestrial (e.g., lunar) conditions, which has the potential to provide materials and power for future space exploration and base construction with local resources as feedstock. In this review article, the recent progress on conventional solar thermochemical systems used for lunar production is reviewed. Important results are discussed to identify the applicability of existing devices and models at lunar conditions. Finally, the challenges ahead and promising directions are presented.

References

1.
Steinfeld
,
A.
, and
Palumbo
,
R.
,
2003
, “
Solar Thermochemical Process Technology
,”
Encycl. Phys. Sci. Technol.
,
15
, pp.
237
256
.10.1016/B0-12-227410-5/00698-0
2.
Koepf
,
E.
,
Alxneit
,
I.
,
Wieckert
,
C.
, and
Meier
,
A.
,
2017
, “
A Review of High Temperature Solar Driven ReactorTechnology: 25 Years of Experience in Research and Development at the Paul Scherrer Institute
,”
Appl. Energy
,
188
, pp.
620
651
.10.1016/j.apenergy.2016.11.088
3.
Neumann
,
A.
, and
Groer
,
U.
,
1996
, “
Experimenting With Concentrated Sunlight Using the DLR Solar Furnace
,”
Sol. Energy
,
58
(
4–6
), pp.
181
190
.10.1016/S0038-092X(96)00079-5
4.
Lipiński
,
W.
,
Davidson
,
J. H.
,
Haussener
,
S.
,
Klausner
,
J. F.
,
Mehdizadeh
,
A. M.
,
Petrasch
,
J.
,
Steinfeld
,
A.
, and
Venstrom
,
L.
,
2013
, “
Review of Heat Transfer Research for Solar Thermochemical Applications
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021005
.10.1115/1.4024088
5.
Fletcher
,
E. A.
,
2001
, “
Solarthermal Processing: A Review
,”
ASME J. Sol. Energy Eng.
,
123
(
2
), pp.
63
74
.10.1115/1.1349552
6.
Zeng
,
K.
,
Gauthier
,
D.
,
Soria
,
J.
,
Mazza
,
G.
, and
Flamant
,
G.
,
2017
, “
Solar Pyrolysis of Carbonaceous Feedstocks: A Review
,”
Sol. Energy
,
156
, pp.
73
92
.10.1016/j.solener.2017.05.033
7.
Hughes
,
G.
,
Pye
,
J.
,
Kaufer
,
M.
,
Abbasi-Shavazi
,
E.
,
Zhang
,
J.
,
McIntosh
,
A.
, and
Lindley
,
T.
,
2016
, “
Reduction of Convective Losses in Solar Cavity Receivers
,”
AIP Conf. Proc.
,
1734
, p.
030023
.10.1063/1.4949075
8.
Beath
,
A. C.
,
2012
, “
Industrial Energy Usage in Australia and the Potential for Implementation of Solar Thermal Heat and Power
,”
Energy
,
43
(
1
), pp.
261
272
.10.1016/j.energy.2012.04.031
9.
Ekman
,
B. M.
,
Brooks
,
G.
, and
Rhamdhani
,
M. A.
,
2014
, “
A Review: Solar Thermal Reactors for Materials Production
,”
Energy Technology 2014: Carbon Dioxide Management and Other Technologies
,
Wiley
,
Hoboken, NJ
.
10.
Villafán-Vidales
,
H. I.
,
Arancibia-Bulnes
,
C. A.
,
Riveros-Rosas
,
D.
,
Romero-Paredes
,
H.
, and
Estrada
,
C. A.
,
2017
, “
An Overview of the Solar Thermochemical Processes for Hydrogen and Syngas Production: Reactors, and Facilities
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
894
908
.10.1016/j.rser.2016.11.070
11.
Vishnevetsky
,
I.
,
Epstein
,
M.
, and
Rubin
,
R.
,
2005
, “
Simulation of Thermal and Chemical Processes in Annular Layer of ZnO-C Mixtures
,”
ASME J. Sol. Energy Eng.
,
127
(
3
), pp.
401
412
.10.1115/1.1877473
12.
Yadav
,
D.
, and
Banerjee
,
R.
,
2016
, “
A Review of Solar Thermochemical Processes
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
497
532
.10.1016/j.rser.2015.10.026
13.
Kodama
,
T.
,
Bellan
,
S.
,
Gokon
,
N.
, and
Cho
,
H. S.
,
2017
, “
Particle Reactors for Solar Thermochemical Processes
,”
Sol. Energy
,
156
, pp.
113
132
.10.1016/j.solener.2017.05.084
14.
Jin
,
J.
,
2019
, “
Study on Concentrated Solar-Driven Thermochemical Fuel Production
,” Ph.D. dissertation,
Institute of Engineering Thermophysics, Chinese Academy of Science
,
Beijing, China
.
15.
Zhang
,
H.
,
Pang
,
S.
,
Luo
,
Z.
,
Shuai
,
Y.
, and
Tan
,
H.
,
2018
, “
Thermal Stress Analysis of Solar Thermochemical Reactor Using Concentrated Solar Radiation
,”
KnE Mater. Sci.
,
4
(
2
), pp.
159
167
.10.18502/kms.v4i2.3049
16.
Witze
,
A.
,
2019
, “
Can NASA Really Return People to the Moon by 2024?
,”
Nature
,
571
(
7764
), pp.
153
154
.10.1038/d41586-019-02020-w
17.
Artemis
,
2021
, “
Humanity's Return on the Moon
,” NASA, Washington, DC, accessed Mar. 5, https://www.nasa.gov/specials/artemis/
18.
Brock
,
W. H.
,
1993
,
The Norton History of Chemistry
,
Norton
,
New York
.
19.
Zeng
,
K.
,
Gauthier
,
D.
,
Li
,
R.
, and
Flamant
,
G.
,
2015
, “
Solar Pyrolysis of Beech Wood: Effects of Pyrolysis Parameters on the Product Distribution and Gas Product Composition
,”
Energy
,
93
(
2
), pp.
1648
1657
.10.1016/j.energy.2015.10.008
20.
Haueter
,
P.
,
Moeller
,
S.
,
Palumbo
,
R.
, and
Steinfeld
,
A.
,
1999
, “
The Production of Zinc by Thermal Dissociation of Zinc Oxide Solar Chemical Reactor Design
,”
Sol. Energy
,
67
(
1–3
), pp.
161
167
.10.1016/S0038-092X(00)00037-2
21.
Schunk
,
L. O.
,
Haeberling
,
P.
,
Wepf
,
S.
,
Wuillemin
,
D.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2008
, “
A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
021009
.10.1115/1.2840576
22.
Koepf
,
E.
,
Advani
,
S. G.
,
Steinfeld
,
A.
, and
Prasad
,
A. K.
,
2012
, “
A Novel Beam-Down, Gravity-Fed, Solar Thermochemical Receiver/Reactor for Direct Solid Particle Decomposition: Design, Modeling, and Experimentation
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
16871
16887
.10.1016/j.ijhydene.2012.08.086
23.
Abanades
,
J. C.
,
Rubin
,
E. S.
, and
Anthony
,
E. J.
,
2004
, “
Sorbent Cost and Performance in CO2 Capture Systems
,”
Ind. Eng. Chem. Res.
,
43
(
13
), pp.
3462
3466
.10.1021/ie049962v
24.
Meier
,
A.
,
Bonaldi
,
E.
,
Cella
,
G. M.
, and
Lipinski
,
W.
,
2005
, “
Multitube Rotary Kiln for the Industrial Solar Production of Lime
,”
ASME J. Sol. Energy Eng.
,
127
(
3
), pp.
386
395
.10.1115/1.1979517
25.
Meier
,
A.
,
Bonaldi
,
E.
,
Cella
,
G. M.
,
Lipinski
,
W.
,
Wuillemin
,
D.
, and
Palumbo
,
R.
,
2004
, “
Design and Experimental Investigation of a Horizontal Rotary Reactor for the Solar Thermal Production of Lime
,”
Energy
,
29
(
5–6
), pp.
811
821
.10.1016/S0360-5442(03)00187-7
26.
Tamaura
,
Y.
,
Ueda
,
Y.
,
Matsunami
,
J.
,
Hasegawa
,
N.
,
Nezuka
,
M.
,
Sano
,
T.
, and
Tsuji
,
M.
,
1999
, “
Solar Hydrogen Production by Using Ferrites
,”
Sol. Energy
,
65
(
1
), pp.
55
57
.10.1016/S0038-092X(98)00087-5
27.
Takahashi
,
Y.
,
Aoki
,
H.
,
Kaneko
,
H.
,
Hasegawa
,
N.
,
Suzuki
,
A.
, and
Tamaura
,
Y.
,
2004
, “
The ZnFe2O4/(ZnO+Fe3O4) System for H2 Production Using Concentrated Solar Energy
,”
Solid State Ionics
,
172
(
1–4
), pp.
89
91
.10.1016/j.ssi.2004.01.038
28.
Gokon
,
N.
,
Mataga
,
T.
,
Kondo
,
N.
, and
Kodama
,
T.
,
2011
, “
Thermochemical Two-Step Water Splitting by Internally Circulating Fluidized Bed of NiFe2O4 Particles: Successive Reaction of Thermal-Reduction and Water-Decomposition Steps
,”
Int. J. Hydrogen Energy
,
36
(
8
), pp.
4757
4767
.10.1016/j.ijhydene.2011.01.076
29.
Miller
,
J. E.
,
Allendorf
,
M. D.
,
Diver
,
R. B.
,
Evans
,
L. R.
,
Siegel
,
N. P.
, and
Stuecker
,
J. N.
,
2008
, “
Metal Oxide Composites and Structures for Ultra-High Temperature Solar Thermochemical Cycles
,”
J. Mater. Sci.
,
43
(
14
), pp.
4714
4728
.10.1007/s10853-007-2354-7
30.
Nakamura
,
T.
, and
Senior
,
C.
,
2005
, “
Solar Thermal Power System for Lunar ISRU Processes
,”
AIP Conf. Proc.
,
746
, pp.
1206
1215
.10.1063/1.1867247
31.
Wang, J.,
2017
, “
New Space Policy Directive Calls for Human Expansion Across Solar System
,” NASA, Washington, DC, accessed Dec. 11, https://moon.nasa.gov/news/35/new-space-policy-directive-calls-for-human-expansion-across-solar-system/
32.
ASA, 2020, “Advancing Space: Australian Civil Space Strategy 2019-2028,” Australian Space Agency, Adelaide, Australia, accessed Feb.18, 2021, https://www.industry.gov.au/strategies-for-the-future/australian-space-agency
33.
JAXA (Japan Aerospace Exploration Agency
),
2005
, “
JAXA2025
,”
Maruzen Planet
,
Tokyo, Japan
.
34.
Information Office of the State Council of the People's Republic of China
,
2000
, “China's space endeavor,” China National Space Administration, Beijing, China, accessed Feb. 18, 2021, http://www.cnsa.gov.cn/n6758824/n6758845/c6772480/content.html
35.
Astrobolic
, 2020, “
Perefrine Lunar Lander, Payload User's Guide
,” Atrobolic Inc., Pittsburgh, PA, accessed May 10, 2021, https://www.astrobotic.com/wp-content/uploads/2021/01/Peregrine-Payload-Users-Guide.pdf
36.
Kornuta
,
D.
,
Abbud-Madrid
,
A.
,
Atkinson
,
J.
,
Barr
,
J.
,
Barnhard
,
G.
,
Bienhoff
,
D.
,
Blair
,
B.
,
Clark
,
V.
,
Cyrus
,
J.
,
DeWitt
,
B.
,
Dreyer
,
C.
,
Finger
,
B.
,
Goff
,
J.
,
Ho
,
K.
,
Kelsey
,
L.
,
Keravala
,
J.
,
Kutter
,
B.
,
Metzger
,
P.
,
Montgomery
,
L.
,
Morrison
,
P.
,
Neal
,
C.
,
Otto
,
E.
,
Roesler
,
G.
,
Schier
,
J.
,
Seifert
,
B.
,
Sowers
,
G.
,
Spudis
,
P.
,
Sundahl
,
M.
,
Zacny
,
K.
, and
Zhu
,
G.
,
2019
, “
Commercial Lunar Propellant Architecture: A Collaborative Study of Lunar Propellant Production
,”
REACH
,
13
, p.
100026
.10.1016/j.reach.2019.100026
37.
Heiken
,
G. H.
,
Vaniman
,
D. T.
, and
French
,
B. M.
,
1991
, “
Lunar Sourcebook. A User's Guide to the Moon
,”
Lunar and Planetary Institute
,
Cambridge University Press
,
Houston, TX
.
38.
Tapia
,
E.
,
González-Pardo
,
A.
,
Iranzo
,
A.
,
Romero
,
M.
,
González-Aguilar
,
J.
,
Vidal
,
A.
,
Martín-Betancourt
,
M.
, and
Rosa
,
F.
,
2019
, “
Multi-Tubular Reactor for Hydrogen Production: CFD Thermal Design and Experimental Testing
,”
Processes
,
7
(
1
), p.
31
.10.3390/pr7010031
39.
Martinek
,
J.
,
Bingham
,
C.
, and
Weimer
,
A. W.
,
2012
, “
Computational Modeling and On-Sun Model Validation for a Multiple Tube Solar Reactor With Specularly Reflective Cavity Walls. Part 1: Heat Transfer Model
,”
Chem. Eng. Sci.
,
81
, pp.
298
310
.10.1016/j.ces.2012.06.064
40.
Poživil
,
P.
,
Ackermann
,
S.
, and
Steinfeld
,
A.
,
2015
, “
Numerical Heat Transfer Analysis of a 50 kWth Pressurized-Air Solar Receiver
,”
ASME J. Sol. Energy Eng.
,
137
(
6
), p.
064504
.10.1115/1.4031536
41.
Reddy
,
K.
,
Premkumar
,
D.
, and
Vikram
,
T.
,
2014
, “
Heat Transfer Modeling and Analysis of Solar Thermo-Chemical Reactor for Hydrogen Production From Water
,”
Energy Procedia
,
57
, pp.
570
579
.10.1016/j.egypro.2014.10.211
42.
Shaw, M., Brooks, G., Rhamdhani, A., Duffy, A., and Pownceby, M., 2021, “Thermodynamic Modelling of Ultra-high Vacuum Thermal Decomposition for Lunar Resource Processing,”
Panet. Space Sci.
, 204, p. 105272.10.1016/j.pss.2021.105272
43.
Vishnevetsky
,
I.
,
Epstein
,
M.
, and
Rubin
,
R.
,
2014
, “
Solar Carboreduction of Alumina Under Vacuum
,”
Energy Procedia
,
49
, pp.
2059
2069
.10.1016/j.egypro.2014.03.218
44.
Schreiner
,
S.
,
Dominguez
,
J.
,
Sibille
,
L.
, and
Hoffman
,
J.
,
2016
, “
Thermophysical Property Models for Lunar Regolith
,”
Adv. Space Res.
,
57
(
5
), pp.
1209
1222
.10.1016/j.asr.2015.12.035
45.
Nakamura
,
T.
, and
Senior
,
C.
,
2008
, “
Solar Thermal Power for Lunar Materials Processing
,”
J. Aerosp. Eng.
,
21
(
2
), pp.
91
101
.10.1061/(ASCE)0893-1321(2008)21:2(91)
46.
Allen
,
C.
, and
McKay
,
D.
,
1995
, “
Oxygen Production From Lunar Soil
,”
SAE Transactions
104
, pp.
1285
1290
.10.2307/44612041
47.
Nakamura
,
T.
,
Van Pelt
,
A.
,
Gustafson
,
R.
, and
Clark
,
L.
,
2008
, “
Solar Thermal Power System for Oxygen Production From Lunar Regolith
,”
AIP Conf. Proc.
,
969
, pp.
178
185
.10.1063/1.2844965
48.
Metzger
,
P.
,
2018
, “
Modeling the Thermal Extraction of Water Ice From Regolith
,”
16th ASCE Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments,
Cleveland, OH, Apr. 9–12, pp.
481
489
.
49.
Brisset
,
J.
,
Miletich
,
T.
, and
Metzger
,
P.
,
2020
, “
Thermal Extraction of Water Ice From the Lunar surface—A 3D Numerical Model
,”
Planet. Space Sci.
,
193
, p.
105082
.10.1016/j.pss.2020.105082
50.
Reiss
,
P.
,
2018
, “
A Combined Model of Heat and Mass Transfer for the In Situ Extraction of Volatile Water From Lunar Regolith
,”
Icarus
,
306
, pp.
1
15
.10.1016/j.icarus.2018.01.020
51.
Schieber
,
G. L.
,
Jones
,
B. M.
,
Orlando
,
T. M.
, and
Loutzenhiser
,
P. G.
,
2020
, “
Advection Diffusion Model for Gas Transport Within a Packed Bed of JSC-1A Regolith Simulant
,”
Acta Astronaut.
,
169
, pp.
32
39
.10.1016/j.actaastro.2019.12.031
52.
Balasubramaniam
,
R.
,
Gokoglu
,
S.
, and
Hegde
,
U.
,
2012
, “
Modeling of Melt Growth During Carbothermal Processing of Lunar Regolith
,”
AIAA
Paper No. 2012-0638.10.2514/6.2012-638
53.
Carlaw
,
H.
, and
Jaeger
,
J.
,
1959
,
Conduction of Heat in Solids
,
Oxford University Press
,
New York
.
54.
Hofstetter
,
W. K.
,
Wooster
,
P. D.
, and
Crawley
,
E. F.
,
2009
, “
Analysis of Human Lunar Outpost Strategies and Architectures
,”
J. Spacecr. Rockets
,
46
(
2
), pp.
419
429
.10.2514/1.36574
55.
Viscio
,
M. A.
,
Gargioli
,
E.
,
Hoffman
,
J. A.
,
Maggiore
,
P.
,
Messidoro
,
A.
, and
Viola
,
N.
,
2014
, “
A Methodology for Innovative Technologies Roadmaps Assessment to Support Strategic Decisions for Future Space Exploration
,”
Acta Astronaut.
,
94
(
2
), pp.
813
833
.10.1016/j.actaastro.2013.10.004
56.
Hu
,
D.
,
Li
,
M.
, and
Li
,
Q.
,
2021
, “
A Solar Thermal Storage Power Generation System Based on Lunar In-Situ Resources Utilization: Modeling and Analysis
,”
Energy
,
223
, p.
120083
.10.1016/j.energy.2021.120083
57.
Lu
,
X.
,
Ma
,
R.
,
Wang
,
C.
, and
Yao
,
W.
,
2016
, “
Performance Analysis of a Lunar Based Solar Thermal Power System With Regolith Thermal Storage
,”
Energy
,
107
, pp.
227
233
.10.1016/j.energy.2016.03.132
58.
Yaqi
,
L.
,
Yaling
,
H.
, and
Weiwei
,
W.
,
2011
, “
Optimization of Solar-Powered Stirling Heat Engine With Finite-Time Thermodynamics
,”
Renewable Energy
,
36
(
1
), pp.
421
427
.10.1016/j.renene.2010.06.037
59.
Tillotson
,
B.
,
1991
, “
Regolith Thermal Energy Storage for Lunar Nighttime Power
,” NASA, Washington, DC, Report No.
NASA-CR-192881
. 10.2514/6.1991-3420
60.
Toro
,
C.
, and
Lior
,
N.
,
2017
, “
Analysis and Comparison of Solar-Heat Driven Stirling, Brayton and Rankine Cycles for Space Power Generation
,”
Energy
,
120
, pp.
549
564
.10.1016/j.energy.2016.11.104
61.
Climent
,
B.
,
Torroba
,
O.
,
González-Cinca
,
R.
,
Ramachandran
,
N.
, and
Griffin
,
M. D.
,
2014
, “
Heat Storage and Electricity Generation in the Moon During the Lunar Night
,”
Acta Astronaut.
,
93
, pp.
352
358
.10.1016/j.actaastro.2013.07.024
62.
Sowers
,
G. F.
, and
Dreyer
,
C. B.
,
2019
, “
Ice Mining in Lunar Permanently Shadowed Regions
,”
New Space
,
7
(
4
), pp.
235
244
.10.1089/space.2019.0002
63.
Godin
,
P. J.
,
Kloos
,
J. L.
,
Seguin
,
A.
, and
Moores
,
J. E.
,
2020
, “
Laboratory Investigations of Lunar Ice Imaging in Permanently Shadowed Regions Using Reflected Starlight
,”
Acta Astronaut.
,
177
, pp.
604
610
.10.1016/j.actaastro.2020.08.015
64.
Johanson
,
R. T.
,
Jang
,
D.
,
Kononov
,
E.
,
Luu
,
M.
,
Morgan
,
S. J.
,
Todd
,
J.
,
Blevins
,
M.
, Contreras, M., Erkel, D., Garcia, A., Holland, J., Kharsanshy, A., Martell, B., Mitchell, A., Roberts, T., Schultz, J., Sentis, A., Rockaway, J., and Hoffman, J.,
2020
, “
What Could We Do With a 20 Meter Tower on the Lunar South Pole? Applications of the Multifunctional Expandable Lunar Lite & Tall Tower (MELLTT)
,”
AIAA
Paper No. 2020-4108.10.2514/6.2020-4108
65.
Heliogen,
2019
, “
Concentrated Solar and Its Role in Solving Climate Change
,” Heliogen Inc., Pasadena, CA, accessed Nov. 18, https://heliogen.com/concentrated-solar-and-its-role-in-solving-climate-change/
66.
Ho
,
C.
,
Christian
,
J.
,
Gill
,
D.
,
Moya
,
A.
,
Jeter
,
S.
,
Abdel-Khalik
,
S.
,
Sadowski
,
D.
,
Siegel
,
N.
,
Al-Ansary
,
H.
,
Amsbeck
,
L.
,
Gobereit
,
B.
, and
Buck
,
R.
,
2014
, “
Technology Advancements for Next Generation Falling Particle Receivers
,”
Energy Procedia
,
49
, pp.
398
407
.10.1016/j.egypro.2014.03.043
67.
Röger
,
M.
,
Amsbeck
,
L.
,
Gobereit
,
B.
, and
Buck
,
R.
,
2011
, “
Face-Down Solid Particle Receiver Using Recirculation
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
031009
.10.1115/1.4004269
68.
Tan
,
T.
,
Chen
,
Y.
,
Chen
,
Z.
,
Siegel
,
N.
, and
Kolb
,
G. J.
,
2009
, “
Wind Effect on the Performance of Solid Particle Solar Receivers With and Without the Protection of an Aerowindow
,”
Sol. Energy
,
83
(
10
), pp.
1815
1827
.10.1016/j.solener.2009.06.014
69.
Siegel
,
N.
,
Gross
,
M.
,
Ho
,
C.
,
Phan
,
T.
, and
Yuan
,
J.
,
2014
, “
Physical Properties of Solid Particle Thermal Energy Storage Media for Concentrating Solar Power Applications
,”
Energy Procedia
,
49
, pp.
1015
1023
.10.1016/j.egypro.2014.03.109
70.
Klausner
,
J. F.
,
Li
,
L.
,
Singh
,
A.
,
Yeung
,
N. A.
,
Mei
,
R.
,
Hahn
,
D.
, and
Petrasch
,
J.
,
2014
, “
The Role of Heat Transfer in Sunlight to Fuel Conversion Using High Temperature Solar Thermochemical Reactors
,”
Proceedings of the 15th International Heat Transfer Conference
, Kyoto, Japan, Aug. 10–15, pp. 221–250. 10.1615/IHTC15.kn.000012
71.
von Zedtwitz
,
P.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2007
, “
Numerical and Experimental Study of Gas-Particle Radiative Heat Exchange in a Fluidized-Bed Reactor for Steam-Gasification of Coal
,”
Chem. Eng. Sci.
,
62
(
1–2
), pp.
599
607
.10.1016/j.ces.2006.09.027
72.
Noebauer
,
U. M.
, and
Sim
,
S. A.
,
2019
, “
Monte Carlo Radiative Transfer
,”
Living Rev. Comput. Astrophys.
,
5
(
1
), p.
1
.10.1007/s41115-019-0004-9
73.
Siegel
,
R.
, and
Howell
,
J.
,
2002
,
Thermal Radiation Heat Transfer
,
Taylor and Francis
,
New York
.
74.
Farmer
,
J. T.
, and
Howell
,
J. R.
,
1998
, “
Comparison of Monte Carlo Strategies for Radiative Transfer in Participating Media
,”
Adv. Heat Transfer
,
31
, pp.
333
429
.10.1016/S0065-2717(08)70243-0
75.
Howell
,
J. R.
,
1998
, “
The Monte Carlo Method in Radiative Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
120
(
3
), pp.
547
560
.10.1115/1.2824310
76.
Dupree
,
S. A.
, and
Fraley
,
S. K.
,
2002
,
A Monte Carlo Primer: A Practical Approach to Radiation Transport
,
Springer
,
Berlin
.
77.
Mayer
,
B.
,
2009
, “
Radiative Transfer in the Cloudy Atmosphere
,”
Eur. J. Phys.
,
1
, pp.
75
99
.10.1140/epjconf/e2009-00912-1
78.
Brandenburg
,
W. M.
,
1964
, “
Focusing Properties of Hemispherical and Ellipsoidal Mirror Reflectometers
,”
J. Opt. Soc. Am.
,
54
(
10
), p.
1235
.10.1364/JOSA.54.001235
79.
Petrasch
,
J.
,
Coray
,
P.
,
Meier
,
A.
,
Brack
,
M.
,
Häberling
,
P.
,
Wuillemin
,
D.
, and
Steinfeld
,
A.
,
2007
, “
A Novel 50 kW 11,000 Suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,”
ASME J. Sol. Energy Eng.
,
129
(
4
), pp.
405
411
.10.1115/1.2769701
80.
Petrasch
,
J.
,
2010
, “
A Free and Open Source Monte Carlo Ray Tracing Program for Concentrating Solar Energy Research
,”
ASME
Paper No. ES2010-90206.10.1115/ES2010-90206
81.
Petrasch
,
J.
,
2002
, “
Thermal Modeling of Solar Chemical Reactors: Transient Behavior, Radiative Transfer
,” MS dissertation, ETH-Zürich, Zürich, Switzerland.
82.
Ekman
,
B. M.
,
Brooks
,
G.
, and
Akbar Rhamdhani
,
M.
,
2015
, “
Development of High Flux Solar Simulators for Solar Thermal Research
,”
Sol. Energy Mater. Sol. Cells
,
141
, pp.
436
446
.10.1016/j.solmat.2015.06.016
83.
Ekman
,
B.
,
2016
, “
The Design, Construction and Performance of a Novel Solar Simulator and Hybrid Reactor
,” Ph.D. dissertation,
Swinburne University of Technology
,
Melbourne, Australia
.
84.
Boubault
,
A.
,
Yellowhair
,
J.
, and
Ho
,
C. K.
,
2017
, “
Design and Characterization of a 7.2 kW Solar Simulator
,”
ASME J. Sol. Energy Eng.
,
139
(
3
), p.
031012
.10.1115/1.4036411
85.
Martinek
,
J.
, and
Weimer
,
A. W.
,
2013
, “
Design Considerations for a Multiple Tube Solar Reactor
,”
Sol. Energy
,
90
, pp.
68
83
.10.1016/j.solener.2013.01.004
86.
Cheng
,
Z. D.
,
He
,
Y. L.
, and
Cui
,
F. Q.
,
2013
, “
A New Modelling Method and Unified Code With MCRT for Concentrating Solar Collectors and Its Applications
,”
Appl. Energy
,
101
, pp.
686
698
.10.1016/j.apenergy.2012.07.048
87.
Cheng
,
Z. D.
,
He
,
Y. L.
, and
Cui
,
F. Q.
,
2013
, “
Numerical Investigations on Coupled Heat Transfer and Synthetical Performance of a Pressurized Volumetric Receiver With MCRT–FVM Method
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1044
1054
.10.1016/j.applthermaleng.2012.08.045
88.
Houaijia
,
A.
,
Sattler
,
C.
,
Roeb
,
M.
,
Lange
,
M.
,
Breuer
,
S.
, and
Säck
,
J. P.
,
2013
, “
Analysis and Improvement of a High-Efficiency Solar Cavity Reactor Design for a Two-Step Thermochemical Cycle for Solar Hydrogen Production From Water
,”
Sol. Energy
,
97
, pp.
26
38
.10.1016/j.solener.2013.07.032
89.
von Zedtwitz
,
P.
, and
Steinfeld
,
A.
,
2005
, “
Steam-Gasification of Coal in a Fluidized-Bed/Packed-Bed Reactor Exposed to Concentrated Thermal Radiation-Modeling and Experimental Validation
,”
Ind. Eng. Chem. Res.
,
44
(
11
), pp.
3852
3861
.10.1021/ie050138w
90.
Lipinski
,
W.
,
Z'Graggen
,
A.
, and
Steinfeld
,
A.
,
2005
, “
Transient Radiation Heat Transfer Within a Nongray Nonisothermal Absorbing-Emitting-Scattering Suspension of Reacting Particles Undergoing Shrinkage
,”
Numer. Heat Transfer, Part B: Fundam.
,
47
(
5
), pp.
443
457
.10.1080/10407790590928955
91.
Klein
,
H. H.
,
Karni
,
J.
,
Ben-Zvi
,
R.
, and
Bertocchi
,
R.
,
2007
, “
Heat Transfer in a Directly Irradiated Solar Receiver/Reactor for Solid-Gas Reactions
,”
Sol. Energy
,
81
(
10
), pp.
1227
1239
.10.1016/j.solener.2007.01.004
92.
Villafán-Vidales
,
H.
,
Arancibiabulnes
,
C.
,
Dehesacarrasco
,
U.
, and
Romeroparedes
,
H.
,
2009
, “
Monte Carlo Radiative Transfer Simulation of a Cavity Solar Reactor for the Reduction of Cerium Oxide
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
115
124
.10.1016/j.ijhydene.2008.10.051
93.
Villafán-Vidales
,
H. I.
,
Abanades
,
S.
,
Arancibia-Bulnes
,
C. A.
,
Riveros-Rosas
,
D.
,
Romero-Paredes
,
H.
,
Espinosa-Paredes
,
G.
, and
Estrada
,
C. A.
,
2012
, “
Radiative Heat Transfer Analysis of a Directly Irradiated Cavity-Type Solar Thermochemical Reactor by Monte-Carlo Ray Tracing
,”
J. Renewable Sustainable Energy
,
4
(
4
), p.
043125
.10.1063/1.4747825
94.
Villafán-Vidales
,
H. I.
,
Abanades
,
S.
,
Montiel-González
,
M.
,
Romero-Paredes
,
H.
,
Arancibia-Bulnes
,
C. A.
, and
Estrada
,
C. A.
,
2015
, “
Transient Heat Transfer Simulation of a 1 kWth Moving Front Solar Thermochemical Reactor for Thermal Dissociation of Compressed ZnO
,”
Chem. Eng. Res. Des.
,
93
, pp.
174
184
.10.1016/j.cherd.2014.05.027
95.
Haussener
,
S.
, and
Steinfeld
,
A.
,
2012
, “
Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation
,”
Materials
,
5
(
1
), pp.
192
209
.10.3390/ma5010192
96.
Furler
,
P.
, and
Steinfeld
,
A.
,
2015
, “
Heat Transfer and Fluid Flow Analysis of a 4 kW Solar Thermochemical Reactor for Ceria Redox Cycling
,”
Chem. Eng. Sci.
,
137
, pp.
373
383
.10.1016/j.ces.2015.05.056
97.
Hischier
,
I.
,
Leumann
,
P.
, and
Steinfeld
,
A.
,
2012
, “
Experimental and Numerical Analyses of a Pressurized Air Receiver for Solar-Driven Gas Turbines
,”
ASME J. Sol. Energy Eng.
,
134
(
2
), p.
021003
.10.1115/1.4005446
98.
Bala Chandran
,
R.
, and
Davidson
,
J. H.
,
2016
, “
Model of Transport and Chemical Kinetics in a Solar Thermochemical Reactor to Split Carbon Dioxide
,”
Chem. Eng. Sci.
,
146
, pp.
302
315
.10.1016/j.ces.2016.03.001
99.
Li
,
L.
,
Chen
,
C.
,
Singh
,
A.
,
Rahmatian
,
N.
,
AuYeung
,
N.
,
Randhir
,
K.
,
Mei
,
R.
,
Klausner
,
J. F.
,
Hahn
,
D. W.
, and
Petrasch
,
J.
,
2016
, “
A Transient Heat Transfer Model for High Temperature Solar Thermochemical Reactors
,”
Int. J. Hydrogen Energy
,
41
(
4
), pp.
2307
2325
.10.1016/j.ijhydene.2015.11.079
100.
Valades-Pelayo
,
P. J.
,
Villafán-Vidales
,
H. I.
,
Romero-Paredes
,
H.
, and
Arancibia-Bulnes
,
C. A.
,
2017
, “
Modeling of a Tubular Solar Reactor for Continuous Reduction of CeO2: The Effect of Particle Size and Loading on Radiative Heat Transfer and Conversion
,”
Chem. Eng. Sci.
,
162
, pp.
77
87
.10.1016/j.ces.2016.12.045
101.
Maag
,
G.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2009
, “
Particle–Gas Reacting Flow Under Concentrated Solar Irradiation
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4997
5004
.10.1016/j.ijheatmasstransfer.2009.02.049
102.
Lipinski
,
W.
, and
Steinfeld
,
A.
,
2005
, “
Transient Radiative Heat Transfer Within a Suspension of Coal Particles Undergoing Steam Gasification
,”
Heat Mass Transfer
,
41
(
11
), pp.
1021
1032
.10.1007/s00231-005-0654-5
103.
Lipiński
,
W.
,
Thommen
,
D.
, and
Steinfeld
,
A.
,
2006
, “
Unsteady Radiative Heat Transfer Within a Suspension of ZnO Particles Undergoing Thermal Dissociation
,”
Chem. Eng. Sci.
,
61
(
21
), pp.
7029
7035
.10.1016/j.ces.2006.07.037
104.
Dombrovsky
,
L. A.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2007
, “
A Diffusion-Based Approximate Model for Radiation Heat Transfer in a Solar Thermochemical Reactor
,”
J. Quant. Spectrosc. Radiat. Transfer
,
103
(
3
), pp.
601
610
.10.1016/j.jqsrt.2006.08.003
105.
Mischler
,
D.
, and
Steinfeld
,
A.
,
1995
, “
Nonisothermal Nongray Absorbing-Emitting-Scattering Suspension of Fe3O4 Particles Under Concentrated Solar Irradiation
,”
ASME J. Heat Transfer-Trans. ASME
,
117
(
2
), pp.
346
354
.10.1115/1.2822528
106.
Brkic
,
M.
,
Koepf
,
E.
, and
Meier
,
A.
,
2017
, “
Solar Carbothermal Reduction of Aerosolized ZnO Particles Under Vacuum: Modeling, Experimentation, and Characterization of a Drop-Tube Reactor
,”
Chem. Eng. J.
,
313
, pp.
435
449
.10.1016/j.cej.2016.12.057
107.
Müller
,
R.
, and
Steinfeld
,
A.
,
2007
, “
Band-Approximated Radiative Heat Transfer Analysis of a Solar Chemical Reactor for the Thermal Dissociation of Zinc Oxide
,”
Sol. Energy
,
81
(
10
), pp.
1285
1294
.10.1016/j.solener.2006.12.006
108.
Wieckert
,
C.
,
Palumbo
,
R.
, and
Frommherz
,
U.
,
2004
, “
A Two-Cavity Reactor for Solar Chemical Processes: Heat Transfer Model and Application to Carbothermic Reduction of ZnO
,”
Energy
,
29
(
5–6
), pp.
771
787
.10.1016/S0360-5442(03)00183-X
109.
Müller
,
R.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2008
, “
Transient Heat Transfer in a Directly-Irradiated Solar Chemical Reactor for the Thermal Dissociation of ZnO
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
524
531
.10.1016/j.applthermaleng.2007.05.002
110.
Villasmil
,
W.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2014
, “
Dynamic Modeling of a Solar Reactor for Zinc Oxide Thermal Dissociation and Experimental Validation Using IR Thermography
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
010901
.10.1115/1.4025511
111.
Schunk
,
L. O.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2009
, “
Heat Transfer Model of a Solar Receiver-Reactor for the Thermal Dissociation of ZnO—Experimental Validation at 10 kW and Scale-Up to 1 MW
,”
Chem. Eng. J.
,
150
(
2–3
), pp.
502
508
.10.1016/j.cej.2009.03.012
112.
Schunk
,
L. O.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2009
, “
Ablative Heat Transfer in a Shrinking Packed-Bed of ZnO Undergoing Solar Thermal Dissociation
,”
AIChE J.
,
55
(
7
), pp.
1659
1666
.10.1002/aic.11782
113.
Villasmil
,
W.
,
Cooper
,
T.
,
Koepf
,
E.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2017
, “
Coupled Concentrating Optics, Heat Transfer, and Thermochemical Modeling of a 100-kWth High-Temperature Solar Reactor for the Thermal Dissociation of ZnO
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021015
.10.1115/1.4035330
114.
Lima
,
K. P. M. D.
,
Dias
,
V. D. F.
, and
Silva
,
J. D. D.
,
2020
, “
Numerical Modelling for the Solar Driven Bi-Reforming of Methane for the Production of Syngas in a Solar Thermochemical Micro-Packed Bed Reactor
,”
Int. J. Hydrogen Energy
,
45
(
17
), pp.
10353
10369
.10.1016/j.ijhydene.2019.08.241
115.
Byun
,
D.
,
Lee
,
C.
, and
Baek
,
S. W.
,
2004
, “
Radiative Heat Transfer in Discretely Heated Irregular Geometry With an Absorbing, Emitting, and Anisotropically Scattering Medium Using Combined Monte-Carlo and Finite Volume Method
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4195
4203
.10.1016/j.ijheatmasstransfer.2004.05.008
116.
Z'Graggen
,
A.
, and
Steinfeld
,
A.
,
2009
, “
Heat and Mass Transfer Analysis of a Suspension of Reacting Particles Subjected to Concentrated Solar Radiation—Application to the Steam-Gasification of Carbonaceous Materials
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
385
395
.10.1016/j.ijheatmasstransfer.2008.05.023
117.
Bellan
,
S.
,
Gokon
,
N.
,
Matsubara
,
K.
,
Cho
,
H.
, and
Kodama
,
T.
,
2018
, “
Numerical and Experimental Study on Granular Flow and Heat Transfer Characteristics of Directly-Irradiated Fluidized Bed Reactor for Solar Gasification
,”
Int. J. Hydrogen Energy
,
43
(
34
), pp.
16443
16457
.10.1016/j.ijhydene.2018.06.033
118.
Bellan
,
S.
,
Matsubara
,
K.
,
Cho
,
H.
,
Nobuyuki
,
G.
, and
Kodama
,
T.
,
2018
, “
A CFD-DEM Study of Hydrodynamics With Heat Transfer in a Gas-Solid Fluidized Bed Reactor for Solar Thermal Applications
,”
Int. J. Heat Mass Transfer
,
116
, pp.
377
392
.10.1016/j.ijheatmasstransfer.2017.09.015
119.
Bellan
,
S.
,
Nobuyuki
,
G.
,
Matsubara
,
K.
,
Cho
,
H.
, and
Kodama
,
T.
,
2018
, “
Heat Transfer Analysis of 5 kWth Circulating Fluidized Bed Reactor for Solar Gasification Using Concentrated Xe Light Radiation
,”
Energy
,
160
, pp.
245
256
.10.1016/j.energy.2018.06.212
120.
Bellan
,
S.
,
Kodama
,
T.
,
Matsubara
,
K.
,
Nobuyuki
,
G.
,
Cho
,
H.
, and
Inoue
,
K.
,
2019
, “
Heat Transfer and Particulate Flow Analysis of a 30 kW Directly Irradiated Solar Fluidized Bed Reactor for Thermochemical Cycling
,”
Chem. Eng. Sci.
,
203
, pp.
511
525
.10.1016/j.ces.2018.09.012
121.
Maag
,
G.
,
Rodat
,
S.
,
Flamant
,
G.
, and
Steinfeld
,
A.
,
2010
, “
Heat Transfer Model and Scale-Up of an Entrained-Flow Solar Reactor for the Thermal Decomposition of Methane
,”
Int. J. Hydrogen Energy
,
35
(
24
), pp.
13232
13241
.10.1016/j.ijhydene.2010.08.119
122.
Wang
,
F.
,
Shuai
,
Y.
,
Tan
,
H.
,
Zhang
,
X.
, and
Mao
,
Q.
,
2013
, “
Heat Transfer Analyses of Porous Media Receiver With Multi-Dish Collector by Coupling MCRT and FVM Method
,”
Sol. Energy
,
93
, pp.
158
168
.10.1016/j.solener.2013.04.004
123.
Lapp
,
J.
, and
Lipiński
,
W.
,
2014
, “
Transient Three-Dimensional Heat Transfer Model of a Solar Thermochemical Reactor for H2O and CO2 Splitting Via Nonstoichiometric Ceria Redox Cycling
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031006
.10.1115/1.4026465
124.
Parthasarathy
,
P.
, and
Le Clercq
,
P.
,
2015
, “
Heat Transfer Simulation in a High Temperature Solar Reactor
,”
Energy Procedia
,
69
, pp.
1810
1818
.10.1016/j.egypro.2015.03.154
125.
Steinfeld
,
A.
, and
Müller
,
F.
,
2019
, “
A Pressurized High-Flux Solar Reactor for the Thermochemical Gasification of Charcoal Slurry—Two-Phase Flow and Heat Transfer Analysis
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
5
), p.
053001
.10.1115/1.4045608
126.
Pan
,
R.
,
Lougou
,
B. G.
,
Shuai
,
Y.
,
Zhang
,
G.
, and
Zhang
,
H.
,
2019
, “
Heat Transfer Modeling of a High-Temperature Porous-Medium Filled Solar Thermochemical Reactor for Hydrogen and Synthesis Gas Production
,”
ASME J. Heat Transfer-Trans.
,
141
(
2
), p.
022601
.10.1115/1.4041707
127.
Abanades
,
S.
, and
Flamant
,
G.
,
2007
, “
Experimental Study and Modeling of a High-Temperature Solar Chemical Reactor for Hydrogen Production From Methane Cracking
,”
Int. J. Hydrogen Energy
,
32
(
10–11
), pp.
1508
1515
.10.1016/j.ijhydene.2006.10.038
128.
Lougou
,
B. G.
,
Shuai
,
Y.
,
Chen
,
X.
,
Yuan
,
Y.
,
Tan
,
H.
, and
Xing
,
H.
,
2017
, “
Analysis of Radiation Heat Transfer and Temperature Distributions of Solar Thermochemical Reactor for Syngas Production
,”
Front. Energy
,
11
(
4
), pp.
480
492
.10.1007/s11708-017-0506-2
129.
Martinek
,
J.
, and
Weimer
,
A. W.
,
2013
, “
Evaluation of Finite Volume Solutions for Radiative Heat Transfer in a Closed Cavity Solar Receiver for High Temperature Solar Thermal Processes
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
585
596
.10.1016/j.ijheatmasstransfer.2012.11.065
130.
Melchior
,
T.
, and
Steinfeld
,
A.
,
2008
, “
Radiative Transfer Within a Cylindrical Cavity With Diffusely/Specularly Reflecting Inner Walls Containing an Array of Tubular Absorbers
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
021013
.10.1115/1.2888755
131.
Kraüpl
,
S.
, and
Steinfeld
,
A.
,
2005
, “
Monte-Carlo Radiative Transfer Modeling of a Solar Chemical Reactor for the co-Production of Zinc and Syngas
,”
ASME J. Sol. Energy Eng.
,
127
(
1
), pp.
102
108
.10.1115/1.1824105
132.
Shuai
,
Y.
,
Xia
,
X. L.
, and
Tan
,
H. P.
,
2008
, “
Radiation Performance of Dish Solar Concentrator/Cavity Receiver Systems
,”
Sol. Energy
,
82
(
1
), pp.
13
21
.10.1016/j.solener.2007.06.005
133.
Cheng
,
Z. D.
,
Men
,
J. J.
,
He
,
Y. L.
,
Tao
,
Y. B.
, and
Ma
,
Z.
,
2019
, “
Comprehensive Study on Novel Parabolic Trough Solar Receiver-Reactors of Gradually-Varied Porosity Catalyst Beds for Hydrogen Production
,”
Renewable Energy
,
143
, pp.
1766
1781
.10.1016/j.renene.2019.05.137
134.
Cheng
,
Z. D.
,
Men
,
J. J.
,
Liu
,
S. C.
, and
He
,
Y. L.
,
2019
, “
Three-Dimensional Numerical Study on a Novel Parabolic Trough Solar Receiver-Reactor of a Locally-Installed Kenics Static Mixer for Efficient Hydrogen Production
,”
Appl. Energy
,
250
, pp.
131
146
.10.1016/j.apenergy.2019.04.179
135.
Cheng
,
Z. D.
,
Men
,
J. J.
,
Zhao
,
X. R.
,
He
,
Y. L.
, and
Tao
,
Y. B.
,
2019
, “
A Comprehensive Study on Parabolic Trough Solar Receiver-Reactors of Methanol-Steam Reforming Reaction for Hydrogen Production
,”
Energy Convers. Manage.
,
186
(
11
), pp.
278
292
.10.1016/j.enconman.2019.02.068
136.
Ma
,
T.
,
Zhu
,
Y.
,
Chen
,
H.
,
Ma
,
Y.
, and
Yang
,
L.
,
2015
, “
Simulation on a Novel Solar High-Temperature Thermochemical Coupled Phase-Change Reactor
,”
Energy Procedia
,
69
, pp.
471
480
.10.1016/j.egypro.2015.03.054
137.
Ozalp
,
N.
, and
JayaKrishna
,
D.
,
2010
, “
CFD Analysis on the Influence of Helical Carving in a Vortex Flow Solar Reactor
,”
Int. J. Hydrogen Energy
,
35
(
12
), pp.
6248
6260
.10.1016/j.ijhydene.2010.03.100
138.
Costandy
,
J.
,
Ghazal
,
N. E.
,
Mohamed
,
M. T.
,
Menon
,
A.
,
Shilapuram
,
V.
, and
Ozalp
,
N.
,
2012
, “
Effect of Reactor Geometry on the Temperature Distribution of Hydrogen Producing Solar Reactors
,”
Int. J. Hydrogen Energy
,
37
(
21
), pp.
16581
16590
.10.1016/j.ijhydene.2012.02.193
139.
Irsyad
,
A.
,
Kim
,
B.
,
Duc
,
D.
,
Hassan
,
S. H. B. A.
, and
Fushinobu
,
K.
,
2018
, “
Numerical Study of Heat Transfer and Chemical Kinetics of Solar Thermochemical Reactor for Hydrogen Production
,”
International Conference on Thermal Science and Technology (ICTST 2017)
, Bali, Indonesia, Nov. 17–19, p. 020002. 10.1063/1.5046586
140.
Coelho
,
P. J.
,
2002
, “
The Role of Ray Effects and False Scattering on the Accuracy of the Standard and Modified Discrete Ordinates Methods
,”
J. Quant. Spectrosc. Radiat. Transfer
,
73
(
2–5
), pp.
231
238
.10.1016/S0022-4073(01)00202-3
141.
Chai
,
J. C.
,
Lee
,
H.
, and
Patankar
,
S.
,
1993
, “
Ray Effect and False Scattering in the Discrete Ordinate Method
,”
Numer. Heat Transfer, Part B: Fundam.
,
24
(
4
), pp.
373
389
.10.1080/10407799308955899
142.
Ramankutty
,
R. A.
, and
Crosbie
,
A. L.
,
1998
, “
Modified Discrete-Ordinates Solution of Radiative Transfer in Three-Dimensional Rectangular Enclosures
,”
J. Quant. Spectrosc. Radiat. Transfer
,
60
(
1
), pp.
103
134
.10.1016/S0022-4073(97)00026-5
143.
Li
,
H.
,
Flamant
,
G.
, and
Lu
,
J.
,
2003
, “
Mitigation of Ray Effects in the Discrete Ordinates Method
,”
Numer. Heat Transfer, Part B: Fundam.
,
43
(
5
), pp.
445
466
.10.1080/713836241
144.
Koo
,
H.
,
Vaillon
,
R.
,
Goutière
,
V.
,
Le Dez
,
V.
,
Cha
,
H.
, and
Song
,
T.
,
2003
, “
Comparison of Three Discrete Ordinates Methods Applied to Two-Dimensional Curved Geometries
,”
Int. J. Therm. Sci.
,
42
(
4
), pp.
343
359
.10.1016/S1290-0729(02)00036-4
145.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
,
1999
, “
Coupled Ordinates Method for Multigrid Acceleration of Radiation Calculations
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
467
473
.10.2514/2.6485
146.
ANSYS
,
2016
, “
Theory Guide. Release 17.0
,” Ansys Inc., Pittsburgh, PA.
147.
Byun
,
D. Y.
,
Baek
,
S. W.
, and
Kim
,
M. Y.
,
2000
, “
Thermal Radiation in a Discretely Heated Irregular Geometry Using the Monte–Carlo, Finite Volume, and Modified Discrete Ordinates Interpolation Method
,”
Numer. Heat Transfer, Part A: Appl.
,
37
(
1
), pp.
1
18
.10.1080/104077800274389
148.
Tan
,
H.
,
Zhang
,
H.
, and
Zhen
,
B.
,
2004
, “
Estimation of Ray Effect and False Scattering in Approximate Solution Method for Thermal Radiative Transfer Equation
,”
Numer. Heat Transfer, Part A: Appl.
,
46
(
8
), pp.
807
829
.10.1080/104077890504267
149.
Hulstrom
,
R.
,
Bird
,
R.
, and
Riordan
,
C.
,
1985
, “
Spectral Solar Irradiance Data Sets for Selected Terrestrial Conditions
,”
Sol. Cells
,
15
(
4
), pp.
365
391
.10.1016/0379-6787(85)90052-3
150.
Lipinski
,
W.
, and
Steinfeld
,
A.
,
2004
, “
Heterogeneous Thermochemical Decomposition Under Direct Irradiation
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1907
1916
.10.1016/j.ijheatmasstransfer.2003.10.010
151.
Chen
,
H.
,
Chen
,
Y.
,
Hsieh
,
H.
, and
Siegel
,
N.
,
2007
, “
Computational Fluid Dynamics Modeling of Gas-Particle Flow Within a Solid-Particle Solar Receiver
,”
ASME J. Sol. Energy Eng.
,
129
(
2
), pp.
160
170
.10.1115/1.2716418
152.
Chen
,
X.
,
Xia
,
X.
,
Meng
,
X.
, and
Dong
,
X.
,
2015
, “
Thermal Performance Analysis on a Volumetric Solar Receiver With Double-Layer Ceramic Foam
,”
Energy Convers. Manage.
,
97
(
15
), pp.
282
289
.10.1016/j.enconman.2015.03.066
153.
Chen
,
X.
,
Xia
,
X.
,
Liu
,
H.
,
Li
,
Y.
, and
Liu
,
B.
,
2016
, “
Heat Transfer Analysis of a Volumetric Solar Receiver by Coupling the Solar Radiation Transport and Internal Heat Transfer
,”
Energy Convers. Manage.
,
114
, pp.
20
27
.10.1016/j.enconman.2016.01.074
154.
Wang
,
F.
,
He
,
Y.
,
Tang
,
S.
, and
Tong
,
Z.
,
2017
, “
Parameter Study on the Fouling Characteristics of the H-Type Finned Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
112
, pp.
367
378
.10.1016/j.ijheatmasstransfer.2017.04.107
155.
Chen
,
X.
,
Wang
,
F.
,
Yan
,
X.
,
Han
,
Y.
,
Cheng
,
Z.
, and
Jie
,
Z.
,
2018
, “
Thermochemical Performance of Solar Driven CO2 Reforming of Methane in Volumetric Reactor With Gradual Foam Structure
,”
Energy
,
151
, pp.
545
555
.10.1016/j.energy.2018.03.086
156.
Kribus
,
A.
,
Gray
,
Y.
,
Grijnevich
,
M.
,
Mittelman
,
G.
,
Mey-Cloutier
,
S.
, and
Caliot
,
C.
,
2014
, “
The Promise and Challenge of Solar Volumetric Absorbers
,”
Sol. Energy
,
110
, pp.
463
481
.10.1016/j.solener.2014.09.035
157.
Villafán-Vidales
,
H. I.
,
Abanades
,
S.
,
Caliot
,
C.
, and
Romero-Paredes
,
H.
,
2011
, “
Heat Transfer Simulation in a Thermochemical Solar Reactor Based on a Volumetric Porous Receiver
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3377
3386
.10.1016/j.applthermaleng.2011.06.022
158.
Wu
,
Z.
, and
Wang
,
Z.
,
2013
, “
Fully Coupled Transient Modeling of Ceramic Foam Volumetric Solar Air Receiver
,”
Sol. Energy
,
89
, pp.
122
133
.10.1016/j.solener.2012.12.016
159.
Belghit
,
A.
,
Reddy
,
A.
, and
Daguenet
,
M.
,
2000
, “
Heat and Mass Transfer in a High Temperature Packed Moving Bed Subject to an External Radiative Source
,”
Chem. Eng. Sci.
,
55
(
18
), pp.
3967
3978
.10.1016/S0009-2509(99)00575-8
160.
Hischier
,
I.
,
Hess
,
D.
,
Lipiński
,
W.
,
Modest
,
M.
, and
Steinfeld
,
A.
,
2009
, “
Heat Transfer Analysis of a Novel Pressurized Air Receiver for Concentrated Solar Power Via Combined Cycles
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
4
), p.
041002
.10.1115/1.4001259
161.
Ebner
,
P. P.
, and
Lipiński
,
W.
,
2011
, “
Heterogeneous Thermochemical Decomposition of a Semi-Transparent Particle Under Direct Irradiation
,”
Chem. Eng. Sci.
,
66
(
12
), pp.
2677
2689
.10.1016/j.ces.2011.03.028
162.
Ebner
,
P.
, and
Lipiński
,
W.
,
2012
, “
Heterogeneous Thermochemical Decomposition of a Semi-Transparent Particle Under High-Flux Irradiation—Changing Grain Size Versus Shrinking Core Models
,”
Numer. Heat Transfer, Part A: Appl.
,
62
(
5
), pp.
412
431
.10.1080/10407782.2012.703466
163.
Dombrovsky
,
L.
,
Schunk
,
L.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2009
, “
An Ablation Model for the Thermal Decomposition of Porous Zinc Oxide Layer Heated by Concentrated Solar Radiation
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2444
2452
.10.1016/j.ijheatmasstransfer.2008.12.025
164.
Wang
,
F.
,
Tan
,
J.
, and
Wang
,
Z.
,
2014
, “
Heat Transfer Analysis of Porous Media Receiver With Different Transport and Thermophysical Models Using Mixture as Feeding Gas
,”
Energy Convers. Manage.
,
83
, pp.
159
166
.10.1016/j.enconman.2014.03.068
165.
Wang
,
P.
,
Vafai
,
K.
, and
Liu
,
D.
,
2014
, “
Analysis of Radiative Effect Under Local Thermal Non-Equilibrium Conditions in Porous Media-Application to a Solar Air Receiver
,”
Numer. Heat Transfer, Part A: Appl.
,
65
(
10
), pp.
931
948
.10.1080/10407782.2013.850917
166.
Çengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2011
,
Heat and Mass Transfer: Fundamentals & Applications
,
McGraw-Hill
,
New York
.
167.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education
,
Harlow, Essex, UK
.
168.
Meier
,
A.
,
1999
, “
A Predictive Computational Fluid Dynamics Model for a Falling Particle Receiver/Reactor Exposed to Concentrated Sunlight
,”
Chem. Eng. Sci.
,
54
(
13–14
), pp.
2899
2895
.10.1016/S0009-2509(98)00376-5
169.
Buck
,
R.
,
Lüpfert
,
E.
, and
Téllez
,
F.
,
2000
, “
Receiver for Solar-Hybrid Gas Turbine and CC Systems (REFOS)
,”
Proceedings of the Tenth International Symposium SolarPACES
, Sydney, Australia, Mar. 8–10, p.
2
.
170.
Li
,
X.
,
Shen
,
Y.
,
Wei
,
L.
,
He
,
C.
,
Lapkin
,
A. A.
,
Lipiński
,
W.
,
Dai
,
Y.
, and
Wang
,
C.
,
2020
, “
Hydrogen Production of Solar-Driven Steam Gasification of Sewage Sludge in an Indirectly Irradiated Fluidized-Bed Reactor
,”
Appl. Energy
,
261
, p.
114229
.10.1016/j.apenergy.2019.114229
171.
Xu
,
C.
,
Song
,
Z.
,
Chen
,
L.
, and
Zhen
,
Y.
,
2011
, “
Numerical Investigation on Porous Media Heat Transfer in a Solar Tower Receiver
,”
Renewable Energy
,
36
(
3
), pp.
1138
1144
.10.1016/j.renene.2010.09.017
172.
Matsubara
,
K.
,
Kazuma
,
Y.
,
Sakurai
,
A.
,
Suzuki
,
S.
,
Soon-Jae
,
L.
,
Kodama
,
T.
,
Gokon
,
N.
,
Seok
,
C. H.
, and
Yoshida
,
K.
,
2014
, “
High-Temperature Fluidized Receiver for Concentrated Solar Radiation by a Beam-Down Reflector System
,”
Energy Procedia
,
49
, pp.
447
456
.10.1016/j.egypro.2014.03.048
173.
Zhu
,
J.
,
Wang
,
K.
,
Jiang
,
Z.
,
Zhua
,
B.
, and
Wu
,
H.
,
2020
, “
Modeling of Heat Transfer for Energy Efficiency Prediction of Solar Receivers
,”
Energy
,
190
, p.
116372
.10.1016/j.energy.2019.116372
174.
Bellan
,
S.
,
Matsubara
,
K.
,
Cheok
,
C. H.
,
Gokon
,
N.
, and
Kodama
,
T.
,
2017
, “
CFD-DEM Investigation of Particles Circulation Pattern of Two-Tower Fluidized Bed Reactor for Beam-Down Solar Concentrating System
,”
Powder Technol.
,
319
, pp.
228
237
.10.1016/j.powtec.2017.06.060
175.
Li
,
L.
,
Mei
,
R.
, and
Klausner
,
J. F.
,
2013
, “
Boundary Conditions for Thermal Lattice Boltzmann Equation Method
,”
J. Comput. Phys.
,
237
, pp.
366
395
.10.1016/j.jcp.2012.11.027
176.
Li
,
L.
,
Mei
,
R.
, and
Klausner
,
J. F.
,
2013
, “
Multiple-Relaxation-Time Lattice Boltzmann Model for the Axisymmetric Convection Diffusion Equation
,”
Int. J. Heat Mass Transfer
,
67
, pp.
338
351
.10.1016/j.ijheatmasstransfer.2013.08.039
177.
Li
,
L.
,
Mei
,
R.
, and
Klausner
,
J. F.
,
2014
, “
Heat Transfer Evaluation on Curved Boundaries in Thermal Lattice Boltzmann Equation Method
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
1
), p.
012403
.10.1115/1.4025046
178.
Yoshida
,
H.
, and
Nagaoka
,
M.
,
2010
, “
Multiple-Relaxation-Time Lattice Boltzmann Model for the Convection and Anisotropic Diffusion Equation
,”
J. Comput. Phys.
,
229
(
20
), pp.
7774
7795
.10.1016/j.jcp.2010.06.037
179.
Puig
,
J.
, and
Balat-Pichelin
,
M.
,
2016
, “
Production of Metallic Nanopowders (Mg, Al) by Solar Carbothermal Reduction of Their Oxides at Low Pressure
,”
J. Magnesium Alloys
,
4
(
2
), pp.
140
150
.10.1016/j.jma.2016.05.003
You do not currently have access to this content.