Radiative heat transfer in oxygen-enhanced inverse flame configurations is an important area of study for fundamental combustion research and for terrestrial and spacecraft fire safety. Motivated by this, heat flux distributions, total radiative heat loss and spectral radiation intensities were investigated experimentally for oxygen-enhanced normal and inverse laminar ethane diffusion flames with increasing heat release rates. The oxygen mole fraction in the oxidizer was varied as 21%, 30%, 50%, and 100% with coflowing normal and inverse flame burners used to stabilize the flames. The inverse diffusion flames were essentially nonluminous while the normal diffusion flames with identical heat release rates were highly luminous. Oxygen enhancement led to reduced flame lengths, increased luminosities and increased total radiative heat loss and spectral radiation intensities for both normal and inverse diffusion flames. Using flame length as the characteristic length parameter, the normalized radiative heat flux distributions for flames approximately collapsed together, further establishing the effectiveness of the single point radiant output measurement technique. Radiative heat loss fractions of normal and inverse diffusion flames with varying oxygen concentrations in the oxidizer are compared. The radiation spectra of all flames included significant contributions from gas radiation from carbon dioxide and water vapor and the radiation spectra of the high oxygen concentration flames included contributions from soot radiation.

References

References
1.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic Press
,
San Diego, CA
.
2.
Markstein
,
G. H.
, 1984, “
Relationship Between Smoke Point and Radiant Emission from Buoyant Turbulent and Laminar Diffusion Flames
,”
Proc. Combust. Inst.
,
20
, pp.
1055
1061
.
3.
Markstein
,
G. H.
, and
De Ris
,
J.
, 1984, “
Radiant Emission and Absorption by Laminar Ethylene and Propylene Diffusion Flames
,”
Proc. Combust. Inst.
,
20
, pp.
1637
1646
.
4.
Gore
,
J. P.
, and
Skinner
,
S. M.
, 1990, “
Radiation Properties of Laminar and Turbulent Methane + Acetylene/Air Diffusion Flames
,”
Am. Soc. Mech. Eng., HTD
141
, pp.
39
47
.
5.
Zheng
,
Y.
,
Barlow
,
R. S.
, and
Gore
,
J. P.
, 2003, “
Measurements and Calculations of Spectral Radiation Intensities of Turbulent Non-Premixed and Partially Premixed Flames
,”
ASME J. Heat Transfer
,
125
, pp.
678
686
.
6.
Zheng
,
Y.
,
Barlow
,
R. S.
, and
Gore
,
J. P.
, 2003, “
Spectral Radiation Properties of Partially Premixed Turbulent Flames
,”
ASME J. Heat Transfer
,
125
, pp.
1065
1073
.
7.
Sivathanu
,
Y. R.
, and
Gore
,
J. P.
, 1994, “
Coupled Radiation and Soot Kinetics Calculations in Laminar Acetylene/Air Diffusion Flames
,”
Combust. Flame
,
97
, pp.
161
172
.
8.
Sivathanu
,
Y. R.
, and
Gore
,
J. P.
, 1997, “
Effects of Gas-Band Radiation on Soot Kinetics in Laminar Methane/Air Diffusion Flames
,”
Combust. Flame
,
110
, pp.
256
263
.
9.
Kaplan
,
C. R.
,
Baek
,
S. W.
,
Oran
,
E. S.
, and
Ellzey
,
J. L.
, 1994, “
Dynamics of a Strongly Radiating Unsteady Ethylene Jet Diffusion Flame
,”
Combust. Flame
,
96
, pp.
1
21
.
10.
Kaplan
,
C. R.
,
Shaddix
,
C. R.
, and
Smith
,
K. C.
, 1996, “
Computations of Enhanced Soot Production in Time Varying CH4/Air Diffusion Flames
,”
Combust. Flame
,
106
, pp.
392
405
.
11.
Smooke
,
M. D.
,
McEnally
,
C. S.
,
Pfefferele
,
M.
,
Hall
,
R. J.
, and
Colket
,
M. B.
, 1999, “
Computational and Experimental Study of Soot Formation in a Coflow, Laminar Diffusion Flame
,”
Combust. Flame
,
117
, pp.
117
139
.
12.
Bennett.
B. A. V.
,
Cheng
,
Z.
,
Pitz
,
R. W.
,
Pfefferele
,
M.
, and
Smooke
,
M. D.
, 2008, “
Computational and Experimental Study of Oxygen-Enhanced Axisymmetric Laminar Methane Flames
,”
Combust. Theory Model.
,
12
, pp.
497
527
.
13.
Katta
,
V. R.
,
Blevins
,
L. G.
, and
Roquemore
,
W. M.
, 2005, “
Dynamics of an Inverse Diffusion Flame and its Role in Polycyclic-Aromatic-Hydrocarbon and Soot Formation
,”
Combust. Flame
,
142
, pp.
33
51
.
14.
Shaddix
,
C. R.
,
Williams
,
T. C.
,
Blevins
,
L. G.
, and
Schefer
,
R. W.
, 2005, “
Flame Structure of Steady and Pulsed Sooting Inverse Jet Diffusion Flames
,”
Proc. Combust. Inst.
,
30
, pp.
1501
1508
.
15.
Lee
,
E. J.
,
Oh
,
K. C.
, and
Shin
,
H. D.
, 2005, “
Sot Formation in Inverse Diffusion Flames of Diluted Ethene
,”
Fuel
,
84
, pp.
543
550
.
16.
Mikofski
,
M. A.
,
Williams
,
T. C.
,
Shaddix
,
C. R.
,
Fernandez-Pello
,
A. C.
, and
Blevins
,
L. G.
, 2007, “
Structure of Laminar Sooting Inverse Diffusion Flames
,”
Combust. Flame
,
149
, pp.
463
478
.
17.
Mikofski
,
M. A.
,
Williams
,
T. C.
,
Shaddix
,
C. R.
, and
Blevins
,
L. G.
, 2006, “
Flame Height Measurement of Laminar Inverse Diffusion Flames
,”
Combust. Flame
,
146
, pp.
63
72
.
18.
Shaddix
,
C. R.
, and
Williams
T. C.
, 2009, “
Measurements of the Velocity Field in Laminar Ethylene Inverse Jet Diffusion Flames
,”
Combust. Flame
,
156
, pp.
942
945
.
19.
Hwang
,
S. S.
, and
Gore
,
J. P.
, 2002, “
Characteristics of Combustion and Radiation Heat Transfer of an Oxygen-Enhanced Flame Burner
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
216
, pp.
379
386
.
20.
Hwang
,
S. S.
, and
Gore
,
J. P.
, 2002, “
Combustion and Radiation Characteristics of Oxygen-Enhanced Inverse Diffusion Flame
,”
KSME Int. J.
,
16
, pp.
1156
1165
.
21.
Sunderland
,
P. B.
,
Krishnan
,
S. S.
, and
Gore
,
J. P.
, 2004, “
Effects of Oxygen Enhancement and Gravity on Normal and Inverse Laminar Jet Diffusion Flames
,”
Combust. Flame
136
, pp.
254
256
.
22.
Jeng
,
S. M.
, and
Faeth
,
G. M.
, 1984, “
Radiative Heat Fluxes Near Turbulent Buoyant Methane Diffusion Flames
,”
ASME J. Heat Transfer
,
106
, pp.
886
888
.
23.
Zheng
,
Y.
, 2003, “
Spectral and Total Radiation Properties of Turbulent Non-Luminous Jet Flames
,” Ph.D. thesis, Purdue University, West Lafayette, Indiana.
24.
Ji
,
J.
,
Gore
,
J. P.
,
Sivathanu
,
Y. R.
, and
Lim
,
J.
, 2004, “
Fast Infrared Array Spectrometer with a Thermoelectrically Cooled 160-Element PbSe Detector
,”
Rev. Sci. Instrum.
,
75
, pp.
333
339
.
25.
Sivathanu
,
Y. R.
, and
Gore
,
J. P.
, 1993, “
Total Radiative Heat Loss in Jet Flames from Single Point Radiative Flux Measurements
,”
Combust. Flame
,
94
, pp.
265
270
.
You do not currently have access to this content.