Decontamination of a radioactive contaminated concrete surface is a new technology for the treatment of radioactive waste. In this paper, concrete decontamination using microwave technology is investigated theoretically. A plane wave assumption of microwave propagation has been employed to estimate the microwave field and power dissipation within the concrete. A one-dimensional, unsteady heat conduction model with microwave heat dissipation resulting from microwave-material interaction has been used to evaluate frequency, steel reinforcement within the concrete, and thermal boundary conditions are also considered in the present model. Four commonly used microwave frequencies of 0.896, 2.45, 10.6, and 18.0 GHz have been utilized in the analysis. The results revealed that as the microwave frequency increases to, or higher than 10.6 GHz, the microwave power dissipation shifts toward the front surface of the concrete. Furthermore, it was observed that use of a higher frequency microwave could reduce power intensity requirements needed to raise the temperature difference or thermal stress to the same value in the same period of time. It was found that the presence of reinforcing steel mesh causes part of the microwave energy to be blocked and reflected. Thus, the temperature or thermal stress of the concrete increases before the reinforcement, and decreases after the reinforcement.

This content is only available via PDF.
You do not currently have access to this content.