Abstract

Demands for rotorcraft with increased flight speed, improved operational performance and reduced environmental impact have led to a drive in research and development of alternative concepts. Compound rotorcraft overcome the flight speed limitations of conventional helicopters with additional lifting and propulsive components. Further to operational benefits, these augmentations provide additional flight control parameters, resulting in control redundancy. This work aims to investigate the impact of optimal control strategies for a generic coaxial compound rotorcraft, equipped with turboshaft engines, targeting the minimization of mission fuel burn and gaseous emissions. The direct redundant controls considered are: (a) main rotor speed, (b) propeller speed, and (c) fuselage pitch attitude. A simulation tool for coaxial compound rotorcraft analysis has been developed and coupled to a zero-dimensional engine performance model and a stirred-reactor combustor model. First, experimental and flight test data were used to provide extensive validation of the developed models. A parametric analysis was then carried out to gain insight into the effect of the redundant controls. This was followed by the derivation of a generalized set of optimal redundant control allocations using a surrogate-assisted genetic algorithm. Application of the optimal redundant control allocations during realistic operational scenarios has demonstrated reductions in fuel burn and NOx of up to 6.93% and 8.74%, respectively. The developed method constitutes a rigorous approach to guide the design of control systems for future advanced rotorcraft.

References

1.
Blackwell
,
R.
, and
Millott
,
T.
,
2008
, “
Dynamics Design Characteristics of the Sikorsky X2 TechnologyTM Demonstrator Aircraft
,”
64th Annual Forum of the American Helicopter Society
,
Montreal, PQ, Canada
,
Apr. 29–May 1
, pp.
886
898
.https://vtol.org/store/product/dynamics-design-characteristics-of-the-sikorsky-x2-technologytm-demonstrator-aircraft-3270.cfm
2.
Walsh
,
D.
,
Weiner
,
S.
,
Arifian
,
K.
,
Lawrence
,
T.
,
Wilson
,
M.
,
Millott
,
T.
, and
Blackwell
,
R.
,
2011
, “
High Airspeed Testing of the Sikorsky X2 TechnologyTM Demonstrator
,”
67th Annual Forum of the American Helicopter Society
,
Virginia Beach, VA
,
May 3–5
, pp.
2999
3010
.https://www.researchgate.net/publication/291311980_High_airspeed_testing_of_the_Sikorsky_X2_Technology_demonstrator
3.
Colucci
,
F.
,
2016
, “
Scaling Up Success
,”
Vertiflite
,
62
(
1
), pp.
40
43
.
4.
Jacobellis
,
G.
,
Gandhi
,
F.
, and
Floros
,
M.
,
2019
, “
Using Control Redundancy for Power and Vibration Reduction on a Coaxial Rotor Helicopter at High Speeds
,”
J. Am. Helicopter Soc.
,
64
(
3
), pp.
1
15
.10.4050/JAHS.64.032008
5.
Herrmann
,
T. A.
,
Celi
,
R.
, and
Baeder
,
J. D.
,
2018
, “
Multidisciplinary Trim Analysis of a Coaxial-Pusher Rotorcraft Configuration
,”
74th Annual Forum of the American Helicopter Society
,
Phoenix, AZ
,
May 14–17
.https://vtol.org/store/product/multidisciplinary-trim-analysis-of-a-coaxialpusher-rotorcraft-configuration-12838.cfm
6.
Herrmann
,
T. A.
,
Celi
,
R.
, and
Baeder
,
J. D.
,
2019
, “
Multidisciplinary, Multiobjective Trim Optimization for a Coaxial-Pusher Rotorcraft Configuration
,”
Vertical Flight Society 75th Annual Forum & Technology Display
,
Philadelphia, PA
,
May 13–16
.https://vtol.org/store/product/multidisciplinary-multiobjective-trim-optimization-for-a-coaxialpusher-rotorcraft-configuration-14648.cfm
7.
Padfield
,
G. D.
,
2007
,
Helicopter Flight Dynamics—The Theory and Application of Flying Qualities and Simulation Modelling
,
Wiley
,
Chichester, UK
.
8.
Reddinger
,
J.-P.
, and
Gandhi
,
F.
,
2015
, “
Physics-Based Trim Optimization of an Articulated Slowed-Rotor Compound Helicopter in High-Speed Flight
,”
J. Aircr.
,
52
(
6
), pp.
1756
1766
.10.2514/1.C032939
9.
Reddinger
,
J.-P.
, and
Gandhi
,
F.
,
2017
, “
Neural Network and Machine Learning Allocation of Redundant Controls for Power Optimization on a Compound Helicopter
,”
73rd Annual Forum American Helicopter Society
,
Fort Worth, TX
,
May 9–11
, pp.
1507
1519
.https://move.rpi.edu/sites/default/files/publication-documents/2017-10.pdf
10.
Reddinger
,
J.-P.
,
Gandhi
,
F.
, and
Kang
,
H.
,
2018
, “
Using Control Redundancy for Power and Vibration Reduction on a Compound Helicopter at High Speeds
,”
J. Am. Helicopter Soc.
,
63
(
3
), pp.
1
13
.10.4050/JAHS.63.032009
11.
Misté
,
G. A.
, and
Benini
,
E.
,
2012
, “
Performance of a Turboshaft Engine for Helicopter Applications Operating at Variable Shaft Speed
,”
ASME
Paper No. GTINDIA2012-9505. 10.1115/GTINDIA2012-9505
12.
Misté
,
G. A.
,
Benini
,
E.
,
Garavello
,
A.
, and
Gonzalez-Alcoy
,
M.
,
2015
, “
A Methodology for Determining the Optimal Rotational Speed of a Variable RPM Main Rotor/Turboshaft Engine System
,”
J. Am. Helicopter Soc.
,
60
(
3
), pp.
1
11
.10.4050/JAHS.60.032009
13.
Misté
,
G. A.
, and
Benini
,
E.
,
2016
, “
Variable-Speed Rotor Helicopters: Performance Comparison Between Continuously Variable and Fixed-Ratio Transmissions
,”
J. Aircr.
,
53
(
5
), pp.
1189
1200
.10.2514/1.C032744
14.
Goulos
,
I.
, and
Bonesso
,
M.
,
2019
, “
Variable Rotor Speed and Active Blade Twist for Civil Rotorcraft: Optimum Scheduling, Mission Analysis, and Environmental Impact
,”
Aerosp. Sci. Technol.
,
88
, pp.
444
456
.10.1016/j.ast.2019.03.040
15.
Han
,
D.
, and
Barakos
,
G. N.
,
2017
, “
Variable-Speed Tail Rotors for Helicopters With Variable-Speed Main Rotors
,”
Aeronaut. J.
,
121
(
1238
), pp.
433
448
.10.1017/aer.2017.4
16.
Garcia
,
T. A.
,
2018
, “
Multi-Speed Gearbox for Tail Rotor of a Compound Helicopter
,” Patent No. U.S. 2018/0215463 A1.
17.
MacMillan
,
W. L.
,
1974
, “
Development of a Modular-Type Computer Program for the Calculation of Gas Turbine Off-Design Performance
,”
Ph.D. dissertation
,
Cranfield University
,
Cranfield, UK
. http://dspace.lib.cranfield.ac.uk/handle/1826/7401
18.
Celis
,
C.
,
2010
, “
Evaluation and Optimisation of Environmentally Friendly Aircraft Propulsion Systems
,”
Ph.D. dissertation
,
Cranfield University
,
Cranfield, UK
.http://dspace.lib.cranfield.ac.uk/handle/1826/4686
19.
van der Wall
,
B. G.
,
2000
, “
The Effect of HHC on the Vortex Convection in the Wake of a Helicopter Rotor
,”
Aerosp. Sci. Technol.
,
4
(
5
), pp.
321
336
.10.1016/S1270-9638(00)00141-3
20.
Yana
,
J.
, and
Rand
,
O.
,
2012
, “
Performance Analysis of a Coaxial Rotor System in Hover: Three Points of View
,”
28th International Congress Aeronautical Sciences
, Brisbane, Australia, Sept. 23–28, Paper No.
ICAS2012-2.7.4
.http://www.icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/726.PDF
21.
Enconniere
,
J.
,
Ortiz-Carretero
,
J.
, and
Pachidis
,
V.
,
2017
, “
Mission Performance Analysis of a Conceptual Coaxial Rotorcraft for Air Taxi Applications
,”
Aerosp. Sci. Technol.
,
69
, pp.
1
14
.10.1016/j.ast.2017.06.015
22.
Hersey
,
S.
,
Sridharan
,
A.
, and
Celi
,
R.
,
2017
, “
Multiobjective Performance Optimization of a Coaxial Compound Rotorcraft Configuration
,”
J. Aircr.
,
54
(
4
), pp.
1498
1507
.10.2514/1.C033999
23.
Leishman
,
J. G.
,
2006
,
Principles of Helicopter Aerodynamics
,
Cambridge University Press
, Cambridge, UK.
24.
Harendra
,
P. B.
,
Joglekar
,
M. J.
,
Gaffey
,
T. M.
, and
Marr
,
R. L.
,
1973
, “
V/STOL Tilt Rotor Study—Volume V: A Mathematical Model for Real Time Flight Simulation of the Bell Model 301 Tilt Rotor Research Aircraft
,” Bell Helicopter Company, Fort Worth, TX, Report No.
301-099-001
.https://www.semanticscholar.org/paper/V%2FSTOL-tilt-rotor-study.-Volume-5%3A-A-mathematical-Harendra-Joglekar/00f36149c3511c4f193fad0e3379e52870c218ed
25.
Harris
,
D. F.
,
2012
, “
Introduction to Autogyros, Helicopters and Other V/STOL Aircraft: Volume II Helicopters
,” NASA, Washington, DC, Report No.
NASA/SP-2012-215959
.https://rotorcraft.arc.nasa.gov/FINAL_Harris%20Vol%20II_Feb%2011%202013.pdf
26.
Yeo
,
H.
,
2019
, “
Design and Aeromechanics Investigation of Compound Helicopters
,”
Aerosp. Sci. Technol.
,
88
, pp.
158
173
.10.1016/j.ast.2019.03.010
27.
Johnson
,
W.
,
2018
, “
NDARC NASA Design and Analysis of Rotorcraft: Theory
,” NASA, Washington, DC, Report No.
NASA/TP-2015-218751
.https://rotorcraft.arc.nasa.gov/ndarc/media/Files/reportsAndPapers/Johnson-TP-2015-218751.pdf
28.
Yeo
,
H.
, and
Johnson
,
W.
,
2014
, “
Investigation of Maximum Blade Loading Capability of Lift-Offset Rotors
,”
J. Am. Helicopter Soc.
,
59
(
1
), pp.
1
12
.10.4050/JAHS.59.012005
29.
Johnson
,
W.
,
2009
, “
Influence of Lift Offset on Rotorcraft Performance
,” NASA, Washington, DC, Report No.
NASA/TP-2009-215404
.https://ntrs.nasa.gov/citations/20100026468
30.
Goulos
,
I.
,
Hempert
,
F.
,
Sethi
,
V.
,
Pachidis
,
V.
,
D'Ippolito
,
R.
, and
D'Auria
,
M.
,
2013
, “
Rotorcraft Engine Cycle Optimization at Mission Level
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091202
.10.1115/1.4024870
31.
Ortiz-Carretero
,
J.
,
Castillo Pardo
,
A.
,
Goulos
,
I.
, and
Pachidis
,
V.
,
2017
, “
Impact of Adverse Environmental Conditions on Rotorcraft Operational Performance and Pollutant Emissions
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
021201
.10.1115/1.4037751
32.
Celis
,
C.
,
Moss
,
B.
, and
Pilidis
,
P.
,
2009
, “
Emissions Modelling for the Optimization of Greener Aircraft Operations
,”
ASME
Paper No. GT2009-59211
. 10.1115/GT2009-59211
33.
Goulos
,
I.
,
Ali
,
F.
,
Tzanidakis
,
K.
,
Pachidis
,
V.
, and
D'Ippolito
,
R.
,
2014
, “
A Multidisciplinary Approach for the Comprehensive Assessment of Integrated Rotorcraft–Powerplant Systems at Mission Level
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
012603
.10.1115/1.4028181
34.
Goulos
,
I.
,
Giannakakis
,
P.
,
Pachidis
,
V.
, and
Pilidis
,
P.
,
2013
, “
Mission Performance Simulation of Integrated Helicopter–Engine Systems Using an Aeroelastic Rotor Model
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091201
.10.1115/1.4024869
35.
Olsson
,
A.
,
Sandberg
,
G.
, and
Dahlblom
,
O.
,
2003
, “
On Latin Hypercube Sampling for Structural Reliability Analysis
,”
Struct. Saf.
,
25
(
1
), pp.
47
68
.10.1016/S0167-4730(02)00039-5
36.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.htm
37.
Arlot
,
S.
, and
Celisse
,
A.
,
2010
, “
A Survey of Cross-Validation Procedures for Model Selection
,”
Stat. Surv.
,
4
, pp.
40
79
.10.1214/09-SS054
38.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
39.
Clean Sky 2
, 2016, “
Fast Rotorcraft IADP
,” Clean Sky 2, Brussels, Belgium, accessed Nov. 2, 2019, https://www.cleansky.eu/fast-rotorcraft-iadp
40.
Bagai
,
A.
,
2008
, “
Aerodynamic Design of the X2 Technology DemonstratorTM Main Rotor Blade
,”
64th Annual Forum of the American Helicopter Society
, Montreal, PQ, Canada, Apr. 29–May 1, pp.
29
44
.https://vtol.org/store/product/aerodynamic-design-of-the-sikorsky-x2-technologytm-demonstrator-main-rotor-blade-3221.cfm
41.
Passe
,
B. J.
,
Sridharan
,
A.
, and
Baeder
,
J. D.
,
2015
, “
Computational Investigation of Coaxial Rotor Interactional Aerodynamics in Steady Forward Flight
,”
AIAA
Paper No. 2015-2883.10.2514/6.2015-2883
42.
Lockheed Martin
,
2017
, “
S-97 Raider Demonstrator
,” Lockheed Martin, Stratford, CT, accessed Nov. 10, 2019, www.lockheedmartin.co.uk/en-us/products/s-97-raider-helicopter.html
43.
Yuan
,
Y.
,
Thomson
,
D.
, and
Chen
,
R.
,
2019
, “
Propeller Control Strategy for Coaxial Compound Helicopters
,”
Proc. Inst. Mech. Eng., Part G
,
233
(
10
), pp.
3775
3789
.10.1177/0954410018806796
44.
Johnson
,
W.
,
Moodie
,
A. M.
, and
Yeo
,
H.
,
2012
, “
Design and Performance of Lift-Offset Rotorcraft for Short-Haul Missions
,”
American Helicopter Society Future Vertical Lift Aircraft Design Conference
, San Francisco, CA, Jan. 18–20, pp.
156
181
.https://rotorcraft.arc.nasa.gov/Publications/files/Johnson_909.pdf
45.
Evans
,
A. J.
, and
Liner
,
G.
,
1951
, “
A Wind-Tunnel Investigation of the Aerodynamic Characteristics of a Full-Scale Sweptback Propeller and Two Related Straight Propellers
,” NACA, Langley, VA, Report No.
NACA RM L50J05
.https://ntrs.nasa.gov/citations/19930090397
46.
Daley
,
B. N.
, and
Lord
,
D. R.
,
1955
, “
Aerodynamic Characteristics of Several 6% Thick Airfoil at Angle of Attack From 0° to 20° at High Subsonic Speed
,” NACA, Langley, VA, Report No.
NACA-TN-3424
.http://naca.central.cranfield.ac.uk/reports/1955/naca-tn-3424.pdf
47.
Gur
,
O.
, and
Rosen
,
A.
,
2008
, “
Comparison Between Blade-Element Models of Propellers
,”
Aeronaut. J.
,
112
(
1138
), pp.
689
704
.10.1017/S0001924000002669
48.
Ballin
,
M. G.
,
1988
, “
A High Fidelity Real-Time Simulation of a Small Turboshaft Engine
,” NASA, Washington, DC, Report No.
NASA-TM-100991
.https://ntrs.nasa.gov/citations/19880016994
49.
Garavello
,
A.
, and
Benini
,
E.
,
2012
, “
Preliminary Study on a Wide-Speed-Range Helicopter Rotor/Turboshaft System
,”
J. Aircr.
,
49
(
4
), pp.
1032
1038
.10.2514/1.C031526
50.
Johnson
,
W.
,
Elmore
,
J. F.
,
Keen
,
E. B.
,
Gallaher
,
A. T.
, and
Nunez
,
G. F.
,
2016
, “
Coaxial Compound Helicopter for Compound Urban Operations
,”
American Helicopter Society Technical Meeting on Aeromechanics Design for Vertical Lift
,
San Francisco, CA
,
Jan. 20–22
, pp.
210
239
.https://vtol.org/store/product/coaxial-compound-helicopter-for-confined-urban-operations-10988.cfm
You do not currently have access to this content.