Abstract

The adaptation of high hydrogen content fuels for low emissions gas turbines represents a potential opportunity to reduce the carbon footprint of these devices. The high flame speed of hydrogen air mixtures combined with the small quenching distances poses a challenge for using these fuels in situations where a significant premixing is desired. In particular, flashback in either the core flow or along the walls (i.e., boundary layer flashback) can be exacerbated with high hydrogen content fuels. In this work, the ability of a flashback correlation previously developed for round jet flames is evaluated for its ability to predict flashback in an annular flow. As a first step, an annular flow is generated with a centerbody located at the centerline of the original round jet flame. Next, various levels of axial swirl is added to that annular flow. Additional flashback data are obtained for various mixtures of hydrogen and methane and hydrogen and carbon monoxide for all the annular flow configurations. Pressures from 3 to 8 bar are tested with mixture temperatures up to 750 K. Flashback is induced by slowly increasing the equivalence ratio. The results obtained show that the same form of the correlation developed for round jet flames can be used to correlate flashback behavior for the annular flow case with and without swirl despite the presence of the centerbody. Adjustments to some of the constants in the original model were made to obtain the best fit, but in general, the correlation is quite similar to that developed for the round jet flame. A significant difference with the annular flow configurations is the determination of the appropriate gradient at the wall, which in the present case is determined using a cold flow computational fluid dynamics simulation.

References

1.
Chu
,
S.
, and
Majumdar
,
A.
,
2012
, “
Opportunities and Challenges for a Sustainable Energy Future
,”
Nature
,
488
(
7411
), pp.
294
303
.10.1038/nature11475
2.
Götz
,
M.
,
Lefebvre
,
J.
,
Mörs
,
F.
,
McDaniel Koch
,
A.
,
Graf
,
F.
,
Bajohr
,
S.
,
Reimert
,
R.
, and
Kolb
,
T.
,
2016
, “
Renewable Power-to-Gas: A Tehcnological and Exomonim Review
,”
Renewable Energy
,
85
, pp.
1371
1390
.10.1016/j.renene.2015.07.066
3.
Jahnson
,
P.
, ed.,
2013
,
Modern Gas Turbine Systems—High Efficiency, Low Emission, Fuel Flexible Power Generation
,
Woodhead Publishing
,
Philadelphia, PA
.
4.
McDonell
,
V. G.
,
2016
, “
Lean Combustion in Gas Turbines
,”
Lean Combustion—Technology and Control
,
Academic Press
,
San Diego, CA
.
5.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011506
.10.1115/1.2771243
6.
Lieuwen
,
T.
,
McDonell
,
V.
,
Santavicca
,
D.
, and
Sattelmayer
,
T.
,
2008
, “
Burner Development and Operability Issues Associated With Steady Flowing Syngas Fired Combustors
,”
Combust Sci Technol
,
180
(
6
), pp.
1169
1192
.10.1080/00102200801963375
7.
Bothien
,
M. R.
,
Ciani
,
J.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Toward Decarbonized Power Generation With Gas Turbines by Using Sequential Combustion for Burning Hydrogen
,”
ASME J. Eng Gas Turbines Power
,
141
(
12
), p.
121013
.10.1115/1.4045256
8.
York
,
W. D.
,
Ziminsky
,
W. W.
, and
Yilmaz
,
E.
,
2013
, “
Development and Testing of a Low NOx Hydrogen Combustion System for Heavy Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
022001
.10.1115/1.4007733
9.
Asai
,
T.
,
Dodo
,
S.
,
Karishuku
,
M.
,
Yagi
,
N.
,
Akiymam
,
Y.
, and
Hayashi
,
A.
,
2015
, “
Performance of Multiple-Injection Dry Low NOx Combustors on Hydrogen-Rich Syngas Fuel in an IGCC Pilot Plant
,”
ASME J. Eng. Gas Turbine Power
,
137
(
9
), p.
091504
.10.1115/1.4029614
10.
Konle
,
M.
, and
Sattelmayer
,
T.
,
2009
, “
Interaction of Heat Release and Vortext Breakdown During Flame Flashback Driven by Combustion Induced Vortex Breakdown
,”
Exp Fluids
,
47
(
4–5
), pp.
627
635
.10.1007/s00348-009-0679-5
11.
Duwig
,
C.
, and
Fuchs
,
L.
,
2007
, “
Large Eddy Simulation of Vortext Breakdown/Flame Interaction
,”
Phys Fluids
, 19, p.
075103
.10.1063/1.2749812
12.
Kroner
,
M.
,
Sattelmayer
,
T.
,
Fritz
,
J.
,
Kiesewetter
,
F.
, and
Hirsch
,
C.
,
2007
, “
Flame Propagation in Swirling Flows—Effect of Local Extinction on the Combustion Induced Vortex Breakdown
,”
Comb Sci. Technol.
,
179
(
7
), pp.
1385
1416
.10.1080/00102200601149902
13.
Ebi
,
D.
, and
Clemens
,
N.
,
2016
, “
Experimental Investigation of Upstream Flame Propagation During Boundary Layer Flashback of Swirl Flames
,”
Combust. Flame
,
168
, pp.
39
52
.10.1016/j.combustflame.2016.03.027
14.
Sayad
,
P.
,
Schonborn
,
A.
,
Li
,
M.
, and
Klingmann
,
J.
,
2014
, “
Visualization of Different Flashback Mechanisms for H2/CH4 Mixtures in a Variable Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
031507
.
15.
Sattelmayer
,
T.
,
Mayer
,
C.
, and
Sangl
,
J.
,
2016
, “
Interaction of Flame Flashback Mechanisms in Premixed Hydrogen-Air Swirl Flames
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
011503
.10.1115/1.4031239
16.
Rechel
,
T.
,
Terhaar
,
S.
, and
Paschereit
,
O.
,
2014
, “
Increasing Flashback Resistance in Lean Prmixed Swirl Stabilized Hydrogen Combustion by Axial Air Injection
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071503
.
17.
Lewis
,
B.
, and
von Elbe
,
G.
,
1943
, “
Stability and Structure of Burner Flames
,”
J. Chem. Phys.
,
11
(
2
), pp.
75
97
.10.1063/1.1723808
18.
Kalantari
,
A.
, and
McDonell
,
V.
,
2017
, “
Boundary Layer Flashback of Non-Swirling Premixed Flames: Mechanisms, Fundamental Research, and Recent Advances
,”
Prog. Energy Combust. Sci.
,
61
, pp.
249
292
.10.1016/j.pecs.2017.03.001
19.
Khitrin
,
L. N.
,
Moin
,
P. B.
,
Smirnov
,
D. B.
, and
Shevchuk
,
V. U.
,
1965
, “
Peculiarities of Laminar- and Turbulent-Flame Flashbacks
,”
Symp. Combust.
,
10
(
1
), pp.
1285
1291
.10.1016/S0082-0784(65)80263-6
20.
Fine
,
B.
,
1958
, “
The Flashback of Laminar and Turbulent Burner Flames at Reduced Pressure
,”
Combust. Flame
,
2
(
3
), pp.
253
266
.10.1016/0010-2180(58)90046-4
21.
Fine
,
B.
,
1959
, “
Effect of Initial Temperature on Flash Back of Laminar and Turbulent Burner Flames
,”
Ind. Eng. Chem.
,
51
(
4
), pp.
564
546
.10.1021/ie50592a044
22.
Duan
,
Z.
,
Shaffer
,
B.
, and
McDonell
,
V.
,
2013
, “
Study of Fuel Composition, Burner Material, and Tip Temperature Effects on Flashback of Enclosed Jet Flame
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
121504
.10.1115/1.4025129
23.
Duan
,
Z.
,
Shaffer
,
B.
,
McDonell
,
V.
,
Baumgartner
,
G.
, and
Sattelmayer
,
T.
,
2013
, “
Influence of Burner Material, Tip Temperature, and Geometrical Flame Configuration on Flashback Propensity of H2 -Air Jet Flames
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
021502
.
24.
Gruber
,
A.
,
Chen
,
J. H.
,
Valiev
,
D.
, and
Law
,
C. K.
,
2012
, “
Direct Numerical Simulation of Premixed Flame Boundary Layer Flashback in Turbulent Channel Flow
,”
J. Fluid Mech.
,
709
, pp.
516
542
.10.1017/jfm.2012.345
25.
Eichler
,
C.
, and
Sattelmayer
,
T.
,
2011
, “
Experiments on Flam Flame Flashback in a Quasi-2D Turbulent Was Boundary Layer for Premixed Methane-Hydrogen-Air Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
011503
.10.1115/1.4001985
26.
Baumgartner
,
G.
,
Boeck
,
L. R.
, and
Sattelmayer
,
T.
,
2015
, “
Experimental Investigation of the Transition Mechanism From Stable Flame to Flashback in a Generic Premixed Combustion System With High-Speed Micro-Particle Image Velocimetry and Micro-PLIF Combined With Chemiluminescence Imaging
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021501
.10.1115/1.4031227
27.
Kalantari
,
A.
,
Sullivan-Lewis
,
E.
, and
McDonell
,
V.
,
2016
, “
Flashback Propensity of Turbulent Hydrogen–Air Jet Flames at Gas Turbine Premixer Conditions
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
061506
.10.1115/1.4031761
28.
Kalantari
,
A.
,
Sullivan-Lewis
,
E.
, and
McDonell
,
V.
,
2017
, “
Application of a Turbulent Jet Flame Flashback Propensity Model to a Commercial Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041506
.10.1115/1.4034649
29.
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2010
, “
Flashback Propensity of Syngas Flames at High Pressure: Diagnostic and Control
,”
ASME
Paper No. GT2010-23456.10.1115/GT2010-23456
30.
Hoferichter
,
V.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2016
, “
Analytic Prediction of Unconfined Boundary Layer Flashback Limits in Premixed Hydrogen–Air Flames
,”
Combust. Theory Model
, 21, pp.
382
418
10.1080/13647830.2016.1240832.
31.
Lin
,
Y.-C.
,
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2013
, “
Turbulent Flame Speed as an Indicator for Flashback Propensity of Hydrogen-Rich Fuel Gases
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
111503
.10.1115/1.4025068
32.
Hoferichter
,
V.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
,
Kalantari
,
A.
,
Sullivan-Lewis
,
E.
, and
McDonell
,
V. G.
,
2017
, “
Comparison of Two Methods to Predict Boundary Layer Flashback Limits of Turbulent Hydrogen-Air Jet Flames
,”
J. Flow, Turbul., Combust.
, 100, pp.
849
873
.10.1007/s10494-017-9882-2
33.
Bouvet
,
N.
,
Halter
,
F.
,
Chauveau
,
C.
, and
Yoon
,
Y.
,
2013
, “
On the Effective Lewis Number Formulations for Lean Hydrogen/Hydrocarbon/Air Mixtures
,”
Int. J. Hydrogen Energy
,
38
(
14
), pp.
5949
5960
.10.1016/j.ijhydene.2013.02.098
34.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1989
, “
Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics
,” Sandia National Lab. (SNL-CA), Livermore, CA, Report No.
89–8009
.10.2172/5681118
35.
Dinkelacker
,
F.
,
Manickam
,
B.
, and
Muppala
,
S. P. R.
,
2011
, “
Modelling and Simulation of Lean Premixed Turbulent Methane/Hydrogen/Air Flames With an Effective Lewis Number Approach
,”
Combust. Flame
,
158
(
9
), pp.
1742
1749
.10.1016/j.combustflame.2010.12.003
36.
Muppala
,
S. P. R.
,
Aluri
,
N. K.
,
Dinkelacker
,
F.
, and
Leipertz
,
A.
,
2005
, “
Development of an Algebraic Reaction Rate Closure for the Numerical Calculation of Turbulent Premixed Methane, Ethylene, and Propane/Air Flames for Pressures Up to 1.0 MPa
,”
Combust. Flame
,
140
(
4
), pp.
257
266
.10.1016/j.combustflame.2004.11.005
37.
Kalantari
,
A.
,
McDonell
,
V.
,
Samuelsen
,
S.
,
Farhangi
,
S.
, and
Ayers
,
D.
,
2018
, “
Towards Improved Boundary Layer Flashback Resistance of a 65 kw Gas Turbine With Retrofittable Injector Concept
,”
ASME
Paper No. GT2018-75834. 10.1115/GT2018-75834
You do not currently have access to this content.