Abstract

In the gas turbines, the blade tip is difficult to be cooled down due to the complex flow and the intense heat transfer process here. Phantom cooling has been considered a kind of second-order cooling effect to help protect the tip using upstream spent cooling air. In this work, the blade tip phantom cooling performance of four different tip configurations (the flat tip (FT), the squealer tip with suction-side rim (SSRST), the squealer tip with pressure-side rim (PSRST), and the squealer tip with double-side rims (DSRST)) was compared under four different cooling air blowing ratios (M), with two different tip gaps (τ = 1.32% C (chord), and 3.22% C). Pressure sensitive paint technique was adopted to obtain the cooling effectiveness contours. The turbulence-validated computational predictions were performed to help analyze the flow characteristics near the tip. Results indicated that the FT case presents the best phantom cooling performance than others, and phantom cooling traces can be detected on most portions of the tip. The η values of the SSRST case are a little bit lower than the FT case, and the PSRST and DSRST cases perform the worst for almost no phantom cooling traces can be observed on the cavity surface. Additionally, a bigger tip gap would reduce the tip phantom cooling effectiveness for any tip configuration. Moreover, from the computational results (τ = 1.32% C, M = 1.5), relatively lower aerodynamic losses are obtained in SSRST and DSRST cases, while the PSRST case shows the highest loss.

References

1.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
AIAA J. Propuls. Power
,
22
(
2
), pp.
271
285
.10.2514/1.11818
2.
Sunden
,
B.
, and
Xie
,
G.
,
2010
, “
Gas Turbine Blade Tip Heat Transfer and Cooling: A Literature Survey
,”
Heat Transfer Eng.
,
31
(
7
), pp.
527
554
.10.1080/01457630903425320
3.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(
4
), pp.
648
657
.10.1115/1.1622712
4.
Jeong
,
J. Y.
,
Kim
,
W.
,
Kwak
,
J. S.
, and
Park
,
J. S.
,
2019
, “
Heat Transfer Coefficient and Film Cooling Effectiveness on the Partial Cavity Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
141
(
7
), p.
071007
.10.1115/1.4042647
5.
Li
,
F.
,
Liu
,
Z.
, and
Feng
,
Z.
, “
Film Cooling and Aerodynamic Performance on Multi-Cavity Squealer Tip of a Turbine Blade
,”
ASME
Paper No. GT2021-59993.10.1115/GT2021-59993
6.
Zhou
,
C.
,
Hodson
,
H.
, and
Lock
,
G.
,
2012
, “
Thermal Performance of Cooled Tips in a High-Pressure Turbine Cascade
,”
AIAA J. Propuls. Power
,
28
(
5
), pp.
900
911
.10.2514/1.B34299
7.
Cheng
,
F.
,
Zhang
,
J.
,
Chang
,
H.
, and
Zhang
,
J.
,
2018
, “
Investigations of Film-Cooling Effectiveness on the Squealer Tip With Various Film-Hole Configurations in a Linear Cascade
,”
Int. J. Heat Mass Transfer
,
117
, pp.
344
357
.10.1016/j.ijheatmasstransfer.2017.09.100
8.
Park
,
J. S.
,
Lee
,
D. H.
,
Rhee
,
D. H.
,
Kang
,
S. H.
, and
Cho
,
H. H.
,
2014
, “
Heat Transfer and Film Cooling Effectiveness on the Squealer Tip of a Turbine Blade
,”
Energy
,
72
, pp.
331
343
.10.1016/j.energy.2014.05.041
9.
Roback
,
R. J.
, and
Dring
,
R. P.
,
1993
, “
Hot Streak and Phantom Cooling in a Turbine Rotor Passage, Part 1—Separate Effects
,”
ASME J. Turbomach.
,
115
(
4
), pp.
657
666
.10.1115/1.2929300
10.
Roback
,
R. J.
, and
Dring
,
R. P.
,
1993
, “
Hot Streak and Phantom Cooling in a Turbine Rotor Passage, Part 2—Combined Effects and Analytical Modeling
,”
ASME J. Turbomach.
,
115
(
4
), pp.
667
674
.10.1115/1.2929301
11.
Zhang
,
L.
,
Yin
,
J.
,
Liu
,
K.
, and
Moon
,
H. K.
,
2015
, “
Effect of Hole Diameter on Nozzle Endwall Film Cooling and Associated Phantom Cooling
,”
ASME
Paper No. GT2015-42541.10.1115/GT2015-42541
12.
Du
,
K.
,
Li
,
Z.
,
Li
,
J.
, and
Sunden
,
B.
,
2017
, “
Influence of the Upstream Slot Geometry on the Endwall Cooling and Phantom Cooling of Vane Suction Side Surface
,”
Appl. Therm. Eng.
,
121
, pp.
688
700
.10.1016/j.applthermaleng.2017.04.143
13.
Zhang
,
L.
,
Yin
,
J.
, and
Moon
,
H. K.
,
2015
, “
The Effects of Vane Showerhead Injection Angle and Film Compound Angle on Nozzle Endwall Cooling (Phantom Cooling)
,”
ASME J. Turbomach.
,
137
(
2
), p.
021003
.10.1115/1.4028291
14.
Yang
,
X.
,
Liu
,
Z.
,
Liu
,
Z.
,
Feng
,
Z.
, and
Simon
,
T.
,
2019
, “
Turbine Platform Phantom Cooling From Airfoil Film Coolant, With Purge Flow
,”
Int. J. Heat Mass Transfer
,
140
, pp.
25
40
.10.1016/j.ijheatmasstransfer.2019.05.109
15.
Zhang
,
Y.
, and
Yuan
,
X.
,
2014
, “
Experimental Investigation of Turbine Phantom Cooling on Endwall With Trailing Edge Discharge Flow
,”
ASME
Paper No. GT2014-26781.10.1115/GT2014-26781
16.
Li
,
S.-J.
,
Yang
,
S.-F.
,
Han
,
J.-C.
,
Zhang
,
L.
, and
Moon
,
H.-K.
,
2016
, “
Turbine Blade Surface Phantom Cooling From Upstream Nozzle Trailing-Edge Ejection
,”
AIAA J. Thermophys. Heat Transfer
,
30
(
4
), pp.
770
781
.10.2514/1.T4796
17.
Li
,
F.
,
Liu
,
Z.
, and
Feng
,
Z.
,
2021
, “
Turbine Blade Tip and Casing Phantom Cooling From Blade-Surface Film Coolant
,”
AIAA J. Thermophys. Heat Transfer
,
35
(
2
), pp.
210
224
.10.2514/1.T6093
18.
Li
,
F.
,
Wang
,
H.
,
Liu
,
Z.
,
Feng
,
Z.
, and
Shi
,
Y.
,
2022
, “
Comparisons of Blade Tip Phantom Cooling Effectiveness for Two Tip Structures With Three Tip Clearances
,”
Appl. Therm. Eng.
,
202
, p.
117868
.10.1016/j.applthermaleng.2021.117868
19.
Shiau
,
C.
,
Sahin
,
I.
,
Ullah
,
I.
,
Han
,
J.
,
Mirzamoghadam
,
A. V.
,
Riahi
,
A.
, and
Stimpson
,
C.
,
2020
, “
Transonic Turbine Vane Endwall Film Cooling Using the Pressure-Sensitive Paint Measurement Technique
,”
ASME J. Turbomach.
,
142
(
8
), p.
081004
.10.1115/1.4045990
20.
Chen
,
D.
,
Zhu
,
H.
,
Liu
,
C.
,
Li
,
H.
,
Li
,
B.
, and
Zhou
,
D.
,
2019
, “
Combined Effects of Unsteady Wake and Free-Stream Turbulence on Turbine Blade Film Cooling With Laid-Back Fan-Shaped Holes Using PSP Technique
,”
Int. J. Heat Mass Transfer
,
133
, pp.
382
392
.10.1016/j.ijheatmasstransfer.2018.12.102
21.
Chowdhury
,
N. H. K.
,
Qureshi
,
S. A.
,
Zhang
,
M.
, and
Han
,
J. C.
,
2017
, “
Influence of Turbine Blade Leading Edge Shape on Film Cooling With Cylindrical Holes
,”
Int. J. Heat Mass Transfer
,
115
, pp.
895
908
.10.1016/j.ijheatmasstransfer.2017.08.020
22.
Zhang
,
L.
, and
Jaiswal
,
R. S.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
123
(
4
), pp.
730
738
.10.1115/1.1400113
23.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), p.
013001
.
24.
Jones
,
T. V.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
349
354
.10.1016/S0142-727X(99)00017-X
25.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
26.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
27.
Vinton
,
K. R.
,
Watson
,
T. B.
,
Wright
,
L. M.
,
Crites
,
D. C.
,
Morris
,
M. C.
, and
Riahi
,
A.
,
2017
, “
Combined Effects of Freestream Pressure Gradient and Density Ratio on the Film Cooling Effectiveness of Round and Shaped Holes on a Flat Plate
,”
ASME J. Turbomach.
,
139
(
4
), p.
041003
.10.1115/1.4035044
28.
O'Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Cheong
,
B. C. Y.
, and
Tibbott
,
I.
,
2012
, “
Aerothermal Performance of a Cooled Winglet at Engine Representative Mach and Reynolds Numbers
,”
ASME J. Turbomach.
,
135
(
1
), p.
011041
.
29.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
You do not currently have access to this content.