Abstract

This paper aims to develop a robust design process by approaching the performance boundaries and evaluating the operability of the pursued geared turbofan (GTF) engine with low specific thrust for entry-into-service (EIS) 2025. A two-spool direct-drive turbofan (DDTF) engine of EIS 2000 was improved according to aircraft specifications and technology boundaries in 2025. A series of optimized engines with consecutive fan diameters were established to seek the ideal engine by balancing specific fuel consumption (SFC), weight, and mission fuel burn. The fan diameter was proved to be a decisive factor for lowering SFC and energy usage. The cycle design optimization process achieved a thermal efficiency of approximately 52%, and a propulsive efficiency of 79.5%, which is 8.19% increase in propulsive efficiency by enlarging fan diameter from 1.6 m to 1.9 m. Meanwhile, the 1.9 m-fan diameter engine achieved a reduction in SFC and fuel burn of 7.47% and 6.58%, respectively, which offers an overall reduction of 30.82% in block fuel burnt and CO2 emission compared to the DDTF engine. A feasibility check verified the viability of the designed optimum engine in terms of fan tip speed, stage loading, and AN2. Dynamic simulation offered a deep understanding of transient behavior and fundamental mechanism of the GTF engine. An important aspect of this paper is the use of advanced ceramic matrix composite (CMC) materials, which led to an improvement of 4.92% in block fuel burn and 2.93% in engine weight.

References

1.
Darecki
,
M.
,
Edelstenne
,
C.
,
Enders
,
T.
,
Fernandez
,
E.
,
Hartman
,
P.
,
Herteman
,
J.-P.
, and
Kerkloh
,
M.
, et al.,
2011
, “Flightpath 2050 Europe's Vision for Aviation,” Publications Office of the European Union, Luxembourg,
Report of the High Level Group on Aviation Research
,
pp. 1–28.https://www.acare4europe.org/sites/acare4europe.org/files/document/Flightpath2050_Final.pdf
2.
Hughes
,
C.
,
2011
, “
The Promise and Challenges of Ultra High Bypass Ratio Engine Technology and Integration
,” NASA, Washington, DC, NASA Technical Report No.
20110011737.
https://ntrs.nasa.gov/api/citations/20110011737/downloads/20110011737.pdf
3.
ACARE,
2012
, “Realising Europe's Vision for Aviation, Strategic Research & Innovation Agenda,” ACARE, Europe, accessed May 2, 2022, https://www.acare4europe.org/sites/acare4europe.org/files/document/ACARE-Strategic-Research-Innovation-Volume-1.pdf
4.
Larsson
,
L.
,
Avell
,
R.
, and
Gronstedt
,
T.
, 2011, “
Mission Optimization of the Geared Turbofan Engine
,” ISABE, Gothenburg, Sweden, ISABE Report No.
ISABE-2011-1314
.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.950.7501&rep=rep1&type=pdf
5.
Dewanji
,
D.
,
Rao
,
G. A.
, and
Van Buijtenen
,
J.
,
2009
, “
Feasibility Study of Some Novel Concepts for High Bypass Ratio Turbofan Engines
,”
ASME
Paper No. GT2009-59166.10.1115/GT2009-59166
6.
Sieber
,
J.
,
2015
, “European Technology Programs for Eco-Efficient Ducted Turbofans,” ISABE, Phoenix, AZ, ISABE Report No.
ISABE-2015-20029
.http://hdl.handle.net/2374.UC/745652
7.
Alexiou
,
A.
,
Aretakis
,
N.
, and
Roumeliotis
,
I.
, et al.,
2017
, “
Performance Modelling of an Ultra-High Bypass Ratio Geared Turbofan
,” ISABE, Manchester, UK, ISABE Report No.
ISABE-2017-22512
.https://www.ltt.ntua.gr/images/PaperPresentations/ISABE2017-22512_pres.pdf
8.
Javier Oliva
,
V.
,
2011
, “
Computer Modelling of Aircraft Performance for Trajectory and Mission Optimization for Civil Aviation
,” M.Sc. thesis,
Cranfield University
, Bedfordshire, UK.
9.
Whurr
,
J.
,
2013
, “
Future Civil Aeroengine Architectures & Technologies
,”
Tenth European Turbomachinery Conference
,
Lappeenranta
,
Finland
, Mar. 15–19, pp.
1
36
.https://kipdf.com/future-civilaeroengine-architectures-technologies_5aadbff21723dd37a7493993.html
10.
Dik
,
A.
,
Bitén
,
N.
,
Zaccaria
,
V.
,
Aslanidou
,
I.
, and
Kyprianidis
,
K. G.
,
2017
, “
Conceptual Design of a 3-Shaft Turbofan Engine With Reduced Fuel Consumption for 2025
,”
Energy Procedia
,
142
, pp.
1728
1735
.10.1016/j.egypro.2017.12.556
11.
Zhang
,
F.
,
2019
, “Conceptual Design of a Three-Shaft High Bypass Turbofan Engine for Entry-Into-Service 2025,” M.Sc. thesis,
Cranfield University
, Bedfordshire, UK.
12.
Larsson
,
L.
,
Larsson
,
T. L.
,
Grönstedt
,
T.
, and
Kyprianidis
,
K. G.
,
2011
, “
Conceptual Design and Mission Analysis for a Geared Turbofan and an Open Rotor Configuration
,”
ASME
Paper No. GT2011-46451. 10.1115/GT2011-46451
13.
Salpingidou
,
C.
,
Misirlis
,
D.
,
Vlahostergios
,
Z.
,
Flouros
,
M.
,
Donus
,
F.
, and
Yakinthos
,
K.
,
2018
, “
Conceptual Design Study of a Geared Turbofan and an Open Rotor Engine With Intercooled Recuperated Core
,”
J. Aerosp. Eng.
,
232
(
14
), pp.
2713
2720
.10.1177/0954410018770883
14.
Francesco
,
S. M.
,
Joshua
,
S.
,
Florian
,
J.
,
2019
, “
Modelling Geared Turbofan and Open Rotor Engine Performance for Year-2050 Long-Range and Short-Range Aircraft
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
041016
.10.1115/1.4045077
15.
Singh
,
G.
,
Gonczy
,
S.
,
Deck
,
C.
,
Lara-Curzio
,
E.
, and
Katoh
,
Y.
,
2018
, “
Interlaboratory Round Robin Study on Axial Tensile Properties of SiC-SiC CMC Tubular Test Specimens
,”
Int. J. Appl. Ceram. Technol.
,
15
(
6
), pp.
1334
1349
.10.1111/ijac.13010
16.
Steibel
,
J.
,
2019
, “
Ceramic Matrix Composites Taking Flight at GE Aviation
,”
Am. Ceram. Soc. Bull.
,
98
(
3
), pp.
30
33
.https://ceramics.org/wpcontent/uploads/2019/03/April-2019_Feature.pdf
17.
Ballal
,
D. R.
, and
Zelina
,
J.
,
2004
, “
Progress in Aeroengine Technology (1939–2003)
,”
J. Aircr.
,
41
(
1
), pp.
43
50
.10.2514/1.562
18.
Gasturb
,
2020
,
Gasturb 13.0 User Manual
,
Gasturb
, Aachen, Germany.
19.
Kurzke
,
J.
,
2009
, “
Fundamental Differences Between Conventional and Geared Turbofans
,”
ASME
Paper No. GT2009-59745.10.1115/GT2009-59745
20.
Kurzke
,
J.
, and
Halliwell
,
I.
,
2018
,
Reynolds Number Corrections, Propulsion and Power
,
Springer
,
Cham, Switzerland
.
21.
Mourouzidis
,
C.
,
2016
, “Cycle Optimsation & Preliminary Design of Very Low Specific Thrust Turbofan Engines,” Ph.D. thesis,
Cranfield University
, Bedfordshire, UK.
22.
Siemens,
2020
,
Simcenter Amesim User Manual
,
Siemens
, Munich, Germany.
23.
Roux
,
E.
,
2007
,
Turbofan and Turbojet Engines Database Handbook
, E. Roux, ed., Blagnace, France.
24.
Airbus, 2005, “
Aircraft Characteristic Airport and Maintenance Planning
,” Airbus S. A. S., France, accessed May 2, 2022, https://www.as.arizona.edu/~gschneid/ECLIPSE_WEB/TSE2015/A320_DOCUMENTS/Airbus-AC-A320-Jun2012.pdf
25.
Kyprianidis, G. K., 2011, “Future Aero Engine Designs: An Evolving Vision,” Advances in Gas Turbine Technology, E. Benini, ed., InTech, Rijeka, Croatia.
26.
Jackson
,
A. J. B.
,
2009
, “
Optimisation of Aero and Industrial Gas Turbine Design for the Environment
,” Ph.D. thesis,
Cranfield University
, Bedfordshire, UK.
27.
Bijewitz
,
J.
,
Seitz
,
A.
, and
Hornung
,
M.
,
2014
, “Architectural Comparison of Advanced ULTRA High Bypass Ratio Turbofans for Medium to Long Range Application,” Deutscher Luft- und Raumfartkongress, Augsburg, Germany, Paper No.
DLR 340105
.https://www.dglr.de/publikationen/2015/340105.pdf
28.
Miguel Angel
,
V. A.
,
2015
, “Preliminary Design and Optimisation of a Power Gearbox for the ULTRAFANTM Geared Engine,” M.Sc. thesis,
Cranfield University
, Bedfordshire, UK.
29.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
, 2nd ed.,
Blackwell Science
, Oxford,
UK
.
30.
Saravanamuttoo
,
H.
,
Rogers
,
G.
, and
Cohen
,
H.
,
2017
,
Gas Turbine Theory
, 7th ed.,
Pearson Education
, Harlow,
UK
.
31.
Moreau
,
A.
, and
Guerin
,
S.
,
2016
, “
The Impact of Low-Speed Fan Design on Noise: An Exploratory Study
,”
ASME J. Turbomach.
,
138
(
8
), p.
081006
.10.1115/1.4032678
32.
Guha
,
A.
,
2001
, “
Optimisation of Aero Gas Turbine Engines
,”
Aeronaut. J.
,
105
(
1049
), pp.
345
358
.10.1017/S0001924000012264
33.
Sebastian
,
S.
,
Kyprianidis
,
G. K.
, and
Tomas
,
G.
,
2015
, “
Consistent Conceptual Design and Performance Modelling of Aero Engines
,”
ASME
Paper No. GT2015-43331.10.1115/GT2015-43331
34.
Horlock
,
J. H.
,
2003
,
Advanced Gas Turbine Cycles
,
Elsevier Science
, Oxford,
UK
.
35.
Daggett
,
D. L.
,
2004
, “Water Misting and Injection of Commercial Aircraft Engines to Reduce Airport NOx,” NASA, Hanover, MD, NASA Technical Report, Report Nos.
NASA/CR-2004-212957, C&EA–BQ130–Y04–002
.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.5383&rep=rep1&type=pdf
36.
Johannes
,
V. H.
,
2010
, “
Design Study of Short- and Medium Range Airliners With Propfan Engines
,” M.Sc. thesis,
Cranfield University
, Bedfordshire, UK.
37.
Dhanuka
,
S. K.
,
Temme
,
J. E.
,
Driscoll
,
J. F.
, and
Mongia
,
H.
,
2009
, “
Vortex Shedding and Mixing Layer Effects on Periodic Flashback in a Lean Premixed Pre Vaporized Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2901
2908
.10.1016/j.proci.2008.06.155
38.
Ackert
,
S.
,
2013
, “Aircraft Payload-Range Analysis for Financiers,” Aircraft Monitor, accessed May 2, 2022, https://catsr.vse.gmu.edu/SYST660/aircraft_payload_range_analysis_for_financiers___v1.pdf
39.
Hensey
,
R.
, and
Magdalina
,
A.
,
2018
, “A320 NEO Vs. CEO Comparison Study,” FPG Amentum, accessed May 2, 2022, https://www.scribd.com/document/386799753/A320-NEO-vs-CEO-Comparison-Study
40.
Zhu
,
D. M.
, and
Robinson
,
C.
,
2017
, “Advanced Thermal Barrier and Environmental Barrier Coating Development at NASA GRC,” NASA, Hanover, MD, NASA Technical Report No.
NASA-20170005680
.https://ntrs.nasa.gov/citations/20170005680
41.
Chen
,
M. W.
,
Qiu
,
H. P.
,
Xie
,
W. J.
,
2019
, “
Research Progress of Continuous Fiber Reinforced Ceramic Matrix Composite in Hot Section Components of Aero Engine
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
678
, p.
012043
.10.1088/1757-899X/678/1/012043
You do not currently have access to this content.