The turbomachinery cascades design is a typical high dimensional computationally expensive and black box problem, thus a metamodel-based design optimization and data mining method is proposed and programed in this work, which is intended to gain knowledge of design space except for optimal solutions. The method combines a Kriging-based global algorithm with data mining techniques of self-organizing map (SOM), analysis of variance (ANOVA), and parallel axis. NACA Rotor 37, a typical axial transonic rotor blade, is selected for the research. Through SOM analysis, the overall changing trend of performance indicators like isentropic efficiency, total pressure ratio, and so on for the rotor blade is nearly consistent; therefore, a single-objective design for maximizing isentropic efficiency of the rotor blade with constraints prescribed on total pressure ratio and mass flow rate is carried out. The computational fluid dynamics (CFD) evaluations needed for the Kriging-based optimization process amount to only 1/5 of that required when employing a modified differential evolution (DE) algorithm as the optimizer. The isentropic efficiency of related optimal solution is 1.74% higher than the reference design. Then, the interactions among design variables and critical performance indicators as well as common features of better solutions are analyzed via ANOVA and parallel axis. Particularly, an ANOVA-based optimization is tried, which can validate the detected significant variables and gain knowledge of subspace with minimum cost. By integrating data mining results with practical knowledge of aerodynamics, it is confirmed that the shock wave has the most significant influence on the aerodynamic performance of transonic rotor blades. The sweep in tip section is found to be responsible for slight tradeoff relation between isentropic efficiency and total pressure ratio. The combinations of forward lean, thinner section profile near the blade leading edge, and compound sweep are favorable to get better aerodynamic performance, which is validated by the configuration of optimal solution obtained by MBGO algorithm.

References

1.
Luo
,
J.
,
Xiong
,
J.
,
Liu
,
F.
, and
McBean
,
I.
,
2011
, “
Three-Dimensional Aerodynamic Design Optimization of a Turbine Blade by Using an Adjoint Method
,”
ASME J. Turbomach.
,
133
(
1
), p.
011026
.
2.
Benini
,
E
.,
2004
, “
Three-Dimensional Multi-Objective Design Optimization of a Transonic Compressor Rotor
,”
J. Propul. Power
,
20
(
3
), pp.
559
565
.
3.
Luo
,
C.
,
Song
,
L.
,
Li
,
J.
, and
Feng
,
Z.
,
2012
, “
A Study on Multidisciplinary Optimization of an Axial Compressor Blade Based on Evolutionary Algorithms
,”
ASME J. Turbomach.
,
134
(
5
), p.
054501
.
4.
Song
,
L.
,
Luo
,
C.
,
Li
,
J.
, and
Feng
,
Z.
,
2012
, “
Automated Multi-Objective and Multidisciplinary Design Optimization of a Transonic Turbine Stages
,”
Proc. Inst. Mech. Eng., Part A
,
226
(
2
), pp.
262
276
.
5.
Guo
,
Z.
,
Song
,
L.
,
Zhou
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2015
, “
Multi-Objective Aerodynamic Optimization Design and Data Mining of a Highly Pressure Ratio Centrifugal Impeller
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
092602
.
6.
Oyama
,
A.
,
Liou
,
M. S.
, and
Obayashi
,
S.
,
2004
, “
Transonic Axial Flow Blade Optimization: Evolutionary Algorithms/Three Dimensional Navier–Stokes Solver
,”
J. Propul. Power
,
20
(
4
), pp.
612
619
.
7.
Jin
,
Y
.,
2011
, “
Surrogate-Assisted Evolutionary Computation: Recent Advances and Future Challenges
,”
Swarm Evol. Comput.
,
1
(
2
), pp.
61
70
.
8.
Forrester
,
A. I. J.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aerosp. Sci.
,
45
(
1
), pp.
50
79
.
9.
OKui
,
H.
,
Verstrate
,
T.
,
Van den Braembussche
,
R. A.
, and
Alsalihi
,
Z.
,
2013
, “
Three-Dimensional Design and Optimization of a Transonic Rotor in Axial Flow Compressors
,”
ASME J. Turbomach.
,
135
(
2
), p.
031009
.
10.
Samad
,
A.
,
Kim
,
K. Y.
,
Goel
,
T.
,
Haftka
,
R. T.
, and
Shyy
,
W.
,
2008
, “
Multiple Surrogate Modeling for Axial Compressor Blade Shape Optimization
,”
J. Propul. Power
,
24
(
2
), pp.
301
310
.
11.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
12.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
13.
Jeong
,
S.
,
Murayama
,
M.
, and
Yamamoto
,
K.
,
2005
, “
Efficient Optimization Design Method Using Kriging Model
,”
J. Aircr.
,
42
(
2
), pp.
413
420
.
14.
Huang
,
D.
,
Allen
,
T. T.
,
Notz
,
W. I.
, and
Zeng
,
N.
,
2006
, “
Global Optimization of Stochastic Black-Box Systems Via Sequential Kriging Meta-Models
,”
J. Global Optim.
,
34
(
3
), pp.
441
466
.
15.
Aulich
,
M.
, and
Siller
,
U.
,
2011
, “
High-Dimensional Constrained Multiobjective Optimization of a Fan Stage
,”
ASME
Paper No. GT2011-45618.
16.
Bagshaw
,
D.
,
Ingram
,
G.
,
Gregory-Smith
,
D.
,
Stokes
,
M.
, and
Harvey
,
N.
,
2008
, “
The Design of Three-Dimensional Turbine Blades Combined With Profiled Endwalls
,”
Proc. Inst. Mech. Eng., Part A
,
222
(
1
), pp.
93
102
.
17.
Shan
,
S.
, and
Wang
,
G. G.
,
2010
, “
Survey of Modeling and Optimization Strategies to Solve High-Dimensional Design Problems With Computationally-Expensive Black-Box Functions
,”
Struct. Multidiscip. Optim.
,
41
(
2
), pp.
219
241
.
18.
Viana
,
F. A. C.
,
Simpson
,
T. W.
,
Balabanov
,
V.
, and
Toropov
,
V.
,
2014
, “
Metamodeling in Multidisciplinary Design Optimization: How Far Have We Really Come?
AIAA J.
,
52
(
4
), pp.
670
690
.
19.
Chiba
,
K.
, and
Obayashi
,
S.
,
2008
, “
Knowledge Discovery for Flyback-Booster Aerodynamic Wing Using Data Mining
,”
J. Spacecr. Rockets
,
45
(
5
), pp.
975
987
.
20.
Chiba
,
K.
,
Oyama
,
A.
,
Obayashi
,
S.
, and
Nakahashi
,
K.
,
2007
, “
Multidisciplinary Design Optimization and Data Mining for Transonic Regional-Jet Wing
,”
J. Aircr.
,
44
(
4
), pp.
1100
1112
.
21.
Oyama
,
A.
,
Nonomura
,
T.
, and
Fujii
,
K.
,
2010
, “
Data Mining of Pareto-Optimal Transonic Airfoil Shapes Using Proper Orthogonal Decomposition
,”
J. Aircr.
,
47
(
5
), pp.
1756
1762
.
22.
German
,
B. J.
,
Feigh
,
K. M.
, and
Daskilewicz
,
M. J.
,
2013
, “
An Experimental Study of Continuous and Discrete Visualization Paradigms for Interactive Trade Space Exploration
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
2
), p.
021004
.
23.
Miller
,
S. W.
,
Simpson
,
T. W.
,
Yukish
,
M. A.
,
Stump
,
G.
,
Mesmer
,
B. L.
,
Tibor
,
E. B.
,
Bloebaum
,
C. L.
, and
Winer
,
E. H.
,
2014
, “
Toward a Value-Driven Design Approach for Complex Engineered Systems Using Trade Space Exploration Tools
,”
ASME
Paper No. DETC2014-34503.
24.
Vesanto
,
J
.,
1999
, “
SOM-Based Data Visualization Methods
,”
Intell. Data Anal.
,
3
(
2
), pp.
111
126
.
25.
Schonlau
,
M.
, and
Welch
,
W. J.
,
2006
,
Screening the Input Variables to a Computer Model via Analysis of Variance and Visualization Screening
,
Springer
,
New York
, pp.
308
327
.
26.
Alhoniemi
,
E.
,
Himberg
,
J.
,
Parhankangas
,
J.
, and
Vesanto
,
J.
,
2013
, “
SOM Toolbox
,” Laboratory of Computer and Information Science, Helsinki University of Technology, Helsinki, Finland, Last accessed June 20, 2014, http://www.cis.hut.fi/projects/somtoolbox/
27.
Fang
,
K. T.
,
Lin
,
D. K. J.
,
Winker
,
P.
, and
Zhang
,
Y.
,
2001
, “
Uniform Design: Theory and Applications
,”
Technometrics
,
42
(
3
), pp.
237
248
.
28.
Giunta
,
A. A.
,
Wojtkiewicz
,
S. F., Jr.
, and
Eldred
,
M. S.
,
2003
, “
Overview of Modern Design of Experiments Methods for Computational Simulations
,”
AIAA
Paper No. 2003-0649.
29.
Gutmann
,
H. M.
,
2001
, “
A Radial Basis Function Method for Global Optimization
,”
J. Global Optim.
,
19
(
3
), pp.
201
227
.
30.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.
31.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “
Design and Overall Performance of Four Highly Loaded, High-Speed Inlet Stages for an Advanced High-Pressure Ratio Core Compressor
,”
Paper No. NASA TP 1337
.
32.
Moore
,
R. D.
, and
Reid
,
L.
,
1980
, “
Performance of Single Axial Flow Transonic Compressor With Rotor and Stator Aspect Ratio of 1.19 and 1.26, Respectively, and With Design Pressure Ratio of 2.05
,” Paper No. NASA TP 1659.
33.
Gen
,
M.
, and
Cheng
,
R.
,
1996
, “
Optimal Design of System Reliability Using Interval Programming and Genetic Algorithms
,”
Comp. Ind. Eng.
,
31
(1–2), pp. 237–240.
34.
Song
,
L.
,
Luo
,
C.
,
Li
,
J.
, and
Feng
,
Z.
,
2011
, “
Aerodynamic Optimization of Axial Turbomachinery Blades Using Parallel Adaptive Range Differential Evolution and Reynolds-Averaged Navier–Stokes Solutions
,”
Int. J. Numer. Methods Biomed. Eng.
,
27
(
2
), pp.
283
303
.
35.
Benini
,
E.
, and
Biollo
,
R.
,
2007
, “
Aerodynamics of Swept and Leaned Transonic Compressor-Rotors
,”
Appl. Energy
,
84
(
10
), pp.
1012
1027
.
36.
Daskilewicz
,
M.
, and
German
,
B.
,
2015
, “
RAVE
,” Aerospace Systems Design Laboratory, Georgia Institute of Technology, Atlanta, GA, last accessed July 10, 2015, http://www.rave.gatech.edu/rave.shtml
You do not currently have access to this content.