An automated three-dimensional multi-objective optimization and data mining method is presented by integrating a self-adaptive multi-objective differential evolution algorithm (SMODE), 3D parameterization method for blade profile and meridional channel, Reynolds-averaged Navier–Stokes (RANS) solver technique and data mining technique of self-organizing map (SOM). Using this method, redesign of a high pressure ratio centrifugal impeller is conducted. After optimization, 16 optimal Pareto solutions are obtained. Detailed aerodynamic analysis indicates that the aerodynamic performance of the optimal Pareto solutions is greatly improved. By SOM-based data mining on optimized solutions, the interactions among objective functions and significant design variables are analyzed. The mechanism behind parameter interactions is also analyzed by comparing the data mining results with the performance of typical designs.

References

1.
Eisenlohr
,
G.
,
Krain
,
H.
,
Richter
,
F. A.
, and
Tiede
,
V.
,
2002
, “
Investigations of the Flow Through a High Pressure Ratio Centrifugal Impeller
,”
ASME
Paper No. GT2002-30394.10.1115/GT2002-30394
2.
Higashimori
,
H.
,
Hasagawa
,
K.
,
Sumida
,
K.
, and
Suita
,
T.
,
2004
, “
Detailed Flow Study of Mach Number 1.6 High Transonic Flow With a Shock Wave in a Pressure Ratio 11 Centrifugal Compressor Impeller
,”
ASME J. Turbomach.
,
126
(
4
), pp.
473
481
.10.1115/1.1791645
3.
Ibaraki
,
S.
,
Matsuo
,
T.
,
Kuma
,
H.
,
Sumida
,
K.
, and
Suita
,
T.
,
2003
, “
Aerodynamics of a Transonic Centrifugal Compressor Impeller
,”
ASME J. Turbomach.
,
125
(
2
), pp.
346
351
.10.1115/1.1540117
4.
Krain
,
H.
, and
Hoffmann
,
B.
,
2008
, “
Flow Study of a Redesigned High-Pressure-Ratio Centrifugal Compressor
,”
J. Propul. Power
,
24
(
5
), pp.
1117
1123
.10.2514/1.35559
5.
Fleming
,
R.
,
Lou
,
F.
, and
Key
,
N. L.
,
2011
, “
The Development of a High Speed Centrifugal Compressor Research Facility
,”
AIAA
Paper No. 2011-227.10.2514/6.AIAA-2011-227
6.
Mangani
,
L.
,
Casartelli
,
E.
, and
Mauri
,
S.
,
2012
, “
Assessment of Various Turbulence Models in a High Pressure Ratio Centrifugal Compressor With an Object Oriented CFD Code
,”
ASME J. Turbomach.
,
134
(
6
), p.
061033
.10.1115/1.4006310
7.
Kang
,
S.
,
2005
, “
Numerical Investigation of a High Speed Centrifugal Compressor Impeller
,”
ASME
Paper No. GT2003-30374.10.1115/GT2005-68092
8.
Ibaraki
,
S.
,
Furukawa
,
M.
,
Iwakiri
,
K.
, and
Takahashi
,
K.
,
2007
, “
Vortical Flow Structure and Loss Generation Process in a Transonic Centrifugal Compressor Impeller
,”
ASME
Paper No. GT2007-27791.10.1115/GT2007-27791
9.
Marconcini
,
M.
,
Rubechini
,
F.
,
Arnone
,
A.
, and
Ibaraki
,
S.
,
2008
, “
Numerical Investigation of a Transonic Centrifugal Compressor
,”
ASME J. Turbomach.
,
130
(
1
), p.
011010
.10.1115/1.2752186
10.
Hunziker
,
R.
,
Dickmann
,
H. P.
, and
Emmrich
,
R.
,
2001
, “
Numerical and Experimental Investigation of a Centrifugal Compressor With an Inducer Casing Bleed System
,”
Proc. Inst. Mech. Eng., Part A
,
215
(
6
), pp.
783
791
.10.1243/0957650011538910
11.
Krain
,
H.
,
2005
, “
Review of Centrifugal Compressor's Application and Development
,”
ASME J. Turbomach.
,
127
(
1
), pp.
25
34
.10.1115/1.1791280
12.
Shan
,
S.
, and
Wang
,
G. G.
,
2010
, “
Survey of Modeling and Optimization Strategies to Solve High-Dimensional Design Problems With Computationally-Expensive Black-Box Functions
,”
Struct. Multidiscip. Optim.
,
41
(
2
), pp.
219
241
.10.1007/s00158-009-0420-2
13.
Luo
,
C.
,
Song
,
L.
,
Li
,
J.
, and
Feng
,
Z.
,
2012
, “
A Study on Multidisciplinary Optimization of an Axial Compressor Blade Based on Evolutionary Algorithms
,”
ASME J. Turbomach.
,
134
(
5
), p.
054501
.10.1115/1.4003817
14.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
Van den Braembussche
,
R. A.
,
2010
, “
Multidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications
,”
ASME J. Turbomach.
,
132
(
3
), p.
031004
.10.1115/1.3144162
15.
Okui
,
H.
,
Verstraete
,
T.
,
Van den Braembussche
,
R. A.
, and
Alsalihi
,
Z.
,
2013
, “
Three-Dimensional Design and Optimization of a Transonic Rotor in Axial Flow Compressors
,”
ASME J. Turbomach.
,
135
(
3
), p.
031009
.10.1115/1.4006668
16.
Jeong
,
S.
,
Chiba
,
K.
, and
Obayashi
,
S.
,
2005
, “
Data Mining for Aerodynamic Design Space
,”
J. Aerosp. Comput., Inf., Commun.
,
2
(
11
), pp.
452
469
.10.2514/1.17308
17.
Simpson
,
T. W.
,
Toropov
,
V.
,
Balabanov
,
V.
, and
Viana
,
F. A.
,
2008
, “
Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far We Have Come—or Not
,”
12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
(
MAO
), Victoria, BC, Canada, Sept. 10-12, AIAA Paper No. 2008-5802.10.2514/6.2008-5802
18.
Chiba
,
K.
, and
Obayashi
,
S.
,
2008
, “
Knowledge Discovery for Flyback-Booster Aerodynamic Wing Using Data Mining
,”
J. Spacecr. Rockets
,
45
(
5
), pp.
975
987
.10.2514/1.28511
19.
Oyama
,
A.
,
Nonomura
,
T.
, and
Fujii
,
K.
,
2010
, “
Data Mining of Pareto-Optimal Transonic Airfoil Shapes Using Proper Orthogonal Decomposition
,”
J. Aircr.
,
47
(
5
), pp.
1756
1762
.10.2514/1.C000264
20.
Alhoniemi
,
E.
,
Himberg
,
J.
,
Parhankangas
,
J.
, and
Vesanto
,
J.
,
2013
, “
SOM Toolbox
,” Laboratory of Computer and Information Science, Helsinki University of Technology, Helsinki, Finland, accessed June 20, 2014, http://www.cis.hut.fi/projects/somtoolbox/
21.
Vesanto
,
J.
,
1999
, “
SOM-Based Data Visualization Methods
,”
Intell. Data Anal.
,
3
(
2
), pp.
111
126
.10.1016/S1088-467X(99)00013-X
22.
Song
,
L.
,
Luo
,
C.
,
Li
,
J.
, and
Feng
,
Z.
,
2011
, “
Automated Multi-Objective and Multidisciplinary Design Optimization of a Transonic Turbine Stage
,”
Proc. Inst. Mech. Eng., Part A
,
226
(
2
), pp.
262
276
.10.1177/0957650911425005
23.
Ultsch
,
A.
,
2002
, “
Emergent Self-Organising Feature Maps Used for Prediction and Prevention of Churn in Mobile Phone Markets
,”
J. Target Meas. Anal. Mark.
,
10
(
4
), pp.
314
324
.10.1057/palgrave.jt.5740056
24.
Guo
,
Z.
,
Zhou
,
Z.
,
Song
,
L.
,
Li
,
J.
, and
Feng
,
Z.
,
2014
, “
Aerodynamic Analysis and Multi-Objective Design of a High Pressure Ratio Centrifugal Impeller
,”
ASME
Paper No. GT2014-25496.10.1115/GT2014-25496
You do not currently have access to this content.