The main goal of current engine development is to increase power density and efficiency and to minimize engine emissions. The idea is to obtain the desired power output with a highly charged combustion engine in combination with exhaust gas turbocharging and a very small engine displacement, which is known as downsizing. The selection of a turbocharger is based on the maps of the turbine and compressor, which are usually measured on a test bench. They also provide important boundary conditions on the engine process simulation of a supercharged engine with this turbocharger. In general, a very accurate measurement of the characteristic maps is desired to ensure the best possible matching. However, random and systematic errors have an impact on the measurement results. In order to assess the quality of the measured and calculated values, it is necessary to determine the uncertainties of the measurement variables as accurately as possible; particularly, the error propagation in calculating the efficiencies. The uncertainties are based on a systematic uncertainty component of the sensor and the confidence interval. In this way, the measurement uncertainty is estimated by linear and geometric combination of the calculated random and systematic uncertainties. After that, the respective uncertainty contributions and the identification of the relevant parameters that influence the resulting measurement uncertainty are evaluated. Knowing the measurement uncertainties of the characteristic maps of a turbocharger, the influence on engine operation will be determined with a one-dimensional engine process simulation model. Consequently, the determined measurement uncertainty will be applied as a deviation on the efficiencies and will be investigated in a GT POWER simulation. The impact of the measurement uncertainty on the engine performance is shown on the basis of load steps.

References

1.
Mai
,
H.
, and
Pucher
,
H.
,
2010
, “
TC Mapping: Parameter Study for Turbocharger Characteristic Field Survey
,” Final Report of the VFI Project, Bad Neuenahr, Germany.
2.
Vogt
,
M.
,
2010
,
Aufladesysteme für Ottomotoren im Vergleich
,
Logos Verlag
,
Berlin
.
3.
German Institute for Standardization
,
1995
, “
DIN 1319-1: Grundlagen der Messtechnik—Teil 1 Grundbegriffe
.”
4.
Parthier
,
R.
,
2008
,
Messtechnik
, 4th updated ed.,
Vieweg
,
Wiesbaden
.
5.
Mühl
,
T.
,
2006
,
Einführung in die elektrische Messtechnik
, 2nd ed.,
Teubner
,
Wiesbaden, Germany
.
6.
Taylor
,
J. R.
,
1997
,
An Introduction to Error Analysis
, 2nd ed.,
University Science Books
,
Sausalito, CA
.
7.
Lerch
,
R.
,
2007
,
Elektrische Messtechnik
, 4th updated ed.,
Springer
,
Berlin
.
8.
Eurolab
,
2006
, “
Guide to the Evaluation of Measurement Uncertainty for Quantitative Test Results
,” Technical Report No. 1/2006.
9.
German Federal Institute for Materials Research and Testing
,
2004
, “
BAM-Leitfaden zur Ermittlung von Messunsicherheiten bei quantitativen Prüfergebnissen
,” Research Report No. 266.
10.
German Institute for Standardization
,
1995
, “
DIN 1319-3: Grundlagen der Messtechnik—Teil 3 Auswertung von Messungen einer einzelnen Messgröße, Messunsicherheit
.”
11.
German Institute for Standardization
,
1995
, “
DIN 1319-4: Grundlagen der Messtechnik—Teil 4 Auswertung von Messungen, Messunsicherheit
.”
12.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing the Uncertainties in Single Sample Experiments
,”
ASME Mech. Eng.
,
75
(1), pp.
3
8
.
13.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.10.1016/0894-1777(88)90043-X
14.
Joint Committee for Guides in Metrology
,
2008
, “
JCGM 100:2008: Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement
.”
15.
Adunka
,
F.
,
2011
, “
Das Konzept Messunsicherheit
,”
Hoffmann, Jörg, Taschenbuch der Messtechnik
, 6th updated ed.,
Fachbuchverlag
,
Munich, Leipzig
.
16.
Eichler
,
H. J.
, Kronfeldt, H. D., and Sahm, J.,
2001
,
Das neue physikalische Grundpraktikum
, 1st ed.,
Springer
,
Berlin
.
17.
Society of Automotive Engineers
,
1995
, “SAE Standard J1826: Turbocharger Gas Stand Test Code,” SAE International, Warrendale, PA.
18.
Pucher
,
H.
, and
Zinner
,
K.
,
2012
,
Aufladung von Verbrennungsmotoren—Grundlagen, Berechnungen, Ausführungen
, 4th ed.,
Springer-Vieweg
,
Berlin
.
19.
Gamma Technologies
,
2012
, “
GT-SUITE Flow Theory Manual
,” Version 7.3, Westmont, IL.
20.
Kadunic
,
S.
, and
Pucher
,
H.
,
2010
, “
Charge Cooling by Use of Exhaust Gas Heat Energy
,” Final Report of the FVV Project No. 965, Bad Neuenahr, Germany.
21.
Otobe
,
T.
,
Grigoriadis
,
P.
,
Sens
,
M.
, and
Berndt
,
R.
,
2010
, “
Method of Performance Measurement for Low Turbocharger Speeds
,”
9th International Conference on Turbochargers and Turbocharging
,
IMechE
, London, May 19–20.10.1243/17547164C012010032
22.
Schernus
,
C.
, Lückmann, D., Schernus, C., Uhlmann, T., Höpke, B., and Nebbia, C.,
2012
, “
Friction and Heat Transfer Effects on Turbocharger Modelling
,”
GT-SUITE User Conference
, Frankfurt am Main, Germany, October 21–25.
23.
Grigoriadis
,
P.
,
Binder
,
E.
,
Böttcher
,
L.
, and
Sens
,
M.
,
2013
, “
Advanced Turbocharger Model for 1D ICE Simulation—Part I
,”
SAE
Technical Paper 2013-01-0581.10.4271/2013-01-0581
24.
Berndt
,
R.
,
2009
, “
Einfluss eines diabaten Turboladermodells auf die Gesamtprozess-Simulation abgasturboaufgeladener PKW-Dieselmotoren
,” Ph.D. dissertation, Technische Universität Berlin, Berlin.
25.
Ryder
,
O.
, and
Subramanian
G.
,
2008
, “
Methods for Improving Turbocharger Simulation Accuracy in GT-POWER
,” GT-SUITE User Conference, Frankfurt am Main, Germany, October 19–20.
26.
Schorn
,
N.
,
Smiljanowski
, V
.
,
Späder
U.
,
Stalmann
,
R.
, and
Kindl
,
H.
,
2008
, “
Turbocharger Turbines in Engine Cycle Simulation
,”
13th Supercharging Conference
, Dresden, Germany, September 25–26.
You do not currently have access to this content.