This paper presents an experimental investigation of the flow mechanisms in an aggressive interturbine transition duct with and without low-profile vortex generators flow control. The interturbine duct had an area ratio of 1.53 and a mean rise angle of 35 deg. Measurements were made inside the annulus at a Reynolds number of 150,000. At the duct inlet, the background turbulence intensity was raised to 2.3% and a uniform swirl angle of 20 deg was established with a 48-airfoil vane ring. Results for the baseline case (no vortex generators) showed the flow structures within the duct were dominated by counter-rotating vortices and boundary layer separation in both the casing and hub regions. The combination of the adverse pressure gradient at the casing's first bend and upstream low momentum wakes caused the boundary layer to separate on the casing. The separated flow on the casing appears to reattach at the second bend. Counter-rotating and corotating vortex generators were installed on the casing. While both vortex generators significantly decreased the casing boundary layer separation with consequential reduction of overall pressure losses, the corotating configuration was found to be more effective.

References

1.
Dominy
,
R. G.
, and
Kirkham
,
D. A.
,
1995
, “
The Influence of Swirl on the Performance of Inter-Turbine Diffusers
,”
VDI Ber.
,
1186
, pp.
107
122
.
2.
Dominy
,
R. G.
, and
Kirkham
,
D. A.
,
1996
, “
The Influence of Blade Wakes on the Performance of Inter-Turbine Diffusers
,”
ASME J. Turbomach.
,
118
(2), pp.
347
352
.10.1115/1.2836649
3.
Dominy
,
R. G.
,
Kirkham
,
D. A.
, and
Smith
,
A. D.
,
1998
, “
Flow Development Through Inter-Turbine Diffusers
,”
ASME J. Turbomach.
,
120
(2), pp.
298
304
.10.1115/1.2841406
4.
Hu
,
S. Z.
,
Zhang
,
Y. F.
,
Zhang
,
X. F.
, and
Vlasic
,
E.
,
2011
, “
Influences of Inlet Swirl Distributions on an Inter-Turbine Duct: Part I—Casing Swirl Variation
,”
ASME
Paper No. GT2011-45554. 10.1115/GT2011-45554
5.
Zhang
,
Y. F.
,
Hu
,
S. Z.
,
Zhang
,
X. F.
, and
Vlasic
,
E.
,
2011
, “
Influences of Inlet Swirl Distributions on an Inter-Turbine Duct: Part II—Hub Swirl Variation
,”
ASME
Paper No. GT2011-45555. 10.1115/GT2011-45555
6.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2003
, “
The Development of Turbine Exit Flow in a Swan-Necked Inter-Stage Diffuser
,”
ASME
Paper No. GT2003-38174. 10.1115/GT2003-38174
7.
Axelsson
,
L.-U.
, and
Johansson
,
T. G.
,
2008
, “
Experimental Investigation of the Time-Averaged Flow in an Intermediate Turbine Duct
,”
ASME
Paper No. GT2008-50829. 10.1115/GT2008-50829
8.
Marn
,
A.
,
Göttlich
,
E.
,
Pecnik
,
R.
,
Malzacher
,
F. J.
,
Schennach
,
O.
, and
Pirker
,
H. P.
,
2007
, “
The Influence of Blade Tip Gap Variation on the Flow Through an Aggressive S-Shaped Intermediate Turbine Duct Downstream of a Transonic Turbine Stage: Part I—Time-Averaged Results
,”
ASME
Paper No. GT2007-27405. 10.1115/GT2007-27405
9.
Göttlich
,
E.
,
Marn
,
A.
,
Pecnik
,
R.
,
Malzacher
,
F. J.
,
Schennach
,
O.
, and
Pirker
,
H. P.
,
2007
, “
The Influence of Blade Tip Gap Variation on the Flow Through an Aggressive S-Shaped Intermediate Turbine Duct Downstream of a Transonic Turbine Stage: Part II—Time-Averaged Results and Surface Flow
,”
ASME
Paper No. GT2007-28069. 10.1115/GT2007-28069
10.
Marn
,
A.
,
Gottlich
,
E.
,
Malzacher
,
F.
, and
Pirker
,
H. P.
,
2012
, “
The Effect of Rotor Tip Clearance Size onto the Separated Flow Through a Super-Aggressive S-Shaped Intermediate Turbine Duct Downstream of a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
134
(5), p.
051019
.10.1115/1.4004446
11.
Zhang
,
Y. F.
,
Zhang
,
X. F.
,
Mahallati
,
A.
, and
Vlasic
,
E.
,
2013
, “
Aerodynamic Design of Low Aspect Ratio Structural Airfoils Within an Inter-Turbine Duct
,” ISABE Paper No. 2013-1149.
12.
Göttlich
,
E.
,
2011
, “
Research on the Aerodynamics of Intermediate Turbine Diffusers
,”
Prog. Aerosp. Sci.
,
47
(4), pp.
249
279
.10.1016/j.paerosci.2011.01.002
13.
Lin
,
J. C.
,
Howard
,
F. G.
, and
Selby
,
G. V.
,
1990
, “
Small Submerged Vortex Generators for Turbulent Flow Separation Control
,”
J. Spacecr. Rockets
,
27
(5), pp.
503
507
.10.2514/3.26172
14.
Kerho
,
M.
,
Hutcherson
,
S.
,
Blackwelder
,
R. F.
, and
Liebeck
,
R. H.
,
1993
, “
Vortex Generators Used to Control Laminar Separation Bubbles
,”
J. Aircr.
,
30
(3), pp.
315
319
.10.2514/3.46336
15.
Velte
,
C. M.
,
Hansen
,
M. O. L.
, and
Cavar
,
D.
,
2008
, “
Flow Analysis of Vortex Generators on Wing Sections by Stereoscopic Particle Image Velocimetry Measurements
,”
Environ. Res. Lett.
,
3
(1), p.
015006
.10.1088/1748-9326/3/1/015006
16.
Hergt
,
A.
,
Meyer
,
R.
,
Müller
,
M.
, and
Engel
,
K.
,
2008
, “
Loss Reduction in Compressor Cascades by Means of Passive Flow Control
,”
ASME
Paper No. GT2008-50357. 10.1115/GT2008-50357
17.
Holmes
,
A. E.
,
Hickey
,
P. K.
,
Murphy
,
W. R.
, and
Hilton
,
D. A.
,
1987
, “
The Application of Sub-Boundary Layer Vortex Generators to Reduce Canopy Mach Rumble Interior Noise on the Gulfstream
,”
AIAA
Paper No. 87-0084. 10.2514/6.1987-84
18.
Reichert
,
B. A.
, and
Wendt
,
B. J.
,
1994
, “
Improving Diffusing S-Duct Performance by Secondary Flow Control
,”
AIAA
Paper No. 94-0365. 10.2514/6.1994-365
19.
Satta
,
F.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
,
Bertini
,
F.
, and
Spano
,
E.
,
2007
, “
Velocity and Turbulence Measurements in a Separating Boundary Layer With and Without Passive Flow Control
,”
Proc. Inst. Mech. Eng., Part A
,
221
(6), pp.
815
823
.10.1243/09576509JPE457
20.
Canepa
,
E.
,
Lengani
,
D.
,
Satta
,
F.
,
Spano
,
E.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2006
, “
Boundary Layer Separation on a Flat Plate With Adverse Pressure Gradients Using Vortex Generators
,”
ASME
Paper No. GT2006-90809. 10.1115/GT2006-90809
21.
Wallin
,
F.
, and
Eriksson
,
L.-E.
,
2006
, “
A Tuning-Free Body-Force Vortex Generator Model
,”
AIAA
Paper No. 2006-0873. 10.2514/6.2006-873
22.
Wallin
,
F.
, and
Eriksson
,
L.-E.
,
2008
, “
Design of an Aggressive Flow-Controlled Turbine Duct
,”
ASME
Paper No. GT2008-51202. 10.1115/GT2008-51202
23.
Santner
,
C.
,
Gottlich
,
E.
,
Marn
,
A.
,
Hubinka
,
J.
, and
Paradiso
,
B.
,
2010
, “
The Application of Low-Profile Vortex Generators in an Intermediate Turbine Diffuser
,”
ASME
Paper No. GT2010-22892. 10.1115/GT2010-22892
24.
Marn
,
A.
,
2008
, “
On the Aerodynamics of Intermediate Turbine Ducts for Competitive and Environmentally Friendly Jet Engines
,”
PhD
thesis,
Graz University of Technology
, Graz, Austria.
25.
Lin
,
J. C.
,
2002
, “
Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation
,”
Prog. Aerosp. Sci.
,
38
(4–5), pp.
389
420
.10.1016/S0376-0421(02)00010-6
26.
Harrison
,
S.
,
1990
, “
Secondary Loss Generation in a Linear Cascade of High-Turning Turbine Blades
,”
ASME J. Turbomach.
,
112
(4), pp.
618
624
.10.1115/1.2927702
27.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Loss and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(1), pp.
1
8
.10.1115/1.3262163
You do not currently have access to this content.