Abstract

We investigate the effect of exit pressure history on the flow characteristics of underexpanded transient jets. Using both experiments and numerical simulations, we study the dynamics of shock-cell and vortex structures within these jets. A shock tube with an open-ended configuration allows us to generate transient jets by adjusting the diaphragm pressure ratio and the length of the driver section. Our results indicate that when the shock Mach number exceeds 1.6, a Mach disk forms, indicating a highly underexpanded transient jet at the exit of the shock tube. A distinguishing feature of this jet is the emergence of counter-rotating vortex rings (CRVRs) alongside the initial primary vortex ring. Our findings reveal a substantial influence of both the amplitude and duration of the peak exit pressure on the characteristics of the Mach disk and vortex ring. Notably, the characteristics of the primary vortex ring exhibit significant sensitivity to the formation and evolution of CRVRs. In cases of continuously decreasing exit pressure, the Mach disk follows a consistent self-similar decay pattern, regardless of the peak exit pressure magnitude. Finally, we present an empirical relationship between exit pressure and the characteristics of the Mach disk. In summary, this research provides insight into the complex interaction between the exit pressure history and the flow characteristics in underexpanded transient jets.

References

1.
Brouillette
,
M.
, and
Hebert
,
C.
,
1997
, “
Propagation and Interaction of Shock-Generated Vortices
,”
Fluid Dyn. Res.
,
21
(
3
), pp.
159
169
.10.1016/S0169-5983(97)00010-5
2.
Kontis
,
K.
,
An
,
R.
, and
Edwards
,
J.
,
2006
, “
Compressible Vortex-Ring Interaction Studies With a Number of Generic Body Configurations
,”
AIAA J.
,
44
(
12
), pp.
2962
2978
.10.2514/1.21018
3.
Dora
,
C. L.
,
Murugan
,
T.
,
De
,
S.
, and
Das
,
D.
,
2014
, “
Role of Slipstream Instability in Formation of Counter-Rotating Vortex Rings Ahead of a Compressible Vortex Ring
,”
J. Fluid Mech.
,
753
, pp.
29
48
.10.1017/jfm.2014.353
4.
Chen
,
C.
,
Xu
,
H.
,
Huang
,
C.
,
Li
,
Z.
, and
Wu
,
Z.
,
2020
, “
Aerodynamic Loading Induced by Muzzle Flows on Small Caliber Spin Stabilized Projectiles
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021501
.10.1115/1.4044964
5.
Schütte
,
D.
, and
Radespiel
,
R.
,
2023
, “
Simulative Quantification of the Supersonic Discharge Process of Cold Gas Airbag Inflators
,”
ASME J. Fluids Eng.
,
145
(
10
), p.
101501
.10.1115/1.4062521
6.
Haghdoost
,
M. R.
,
Edgington-Mitchell
,
D.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2020
, “
High-Speed Schlieren and Particle Image Velocimetry of the Exhaust Flow of a Pulse Detonation Combustor
,”
AIAA J.
,
58
(
8
), pp.
3527
3543
.10.2514/1.J058540
7.
Orescanin
,
M.
,
Austin
,
J.
, and
Kieffer
,
S.
,
2010
, “
Unsteady High-Pressure Flow Experiments With Applications to Explosive Volcanic Eruptions
,”
J. Geophys. Res. Solid Earth
, Res., 115, p. B06206.10.1029/2009JB006985
8.
Cigala
,
V.
,
Kueppers
,
U.
,
Peña Fernández
,
J.
,
Taddeucci
,
J.
,
Sesterhenn
,
J.
, and
Dingwell
,
D.
,
2017
, “
The Dynamics of Volcanic Jets: Temporal Evolution of Particles Exit Velocity From Shock-Tube Experiments
,”
J. Geophys. Res.: Solid Earth
,
122
(
8
), pp.
6031
6045
.10.1002/2017JB014149
9.
Sheng
,
J.
,
Li
,
X.
,
Wang
,
Y.
,
Hao
,
P.
,
Zhang
,
X.
, and
He
,
F.
,
2022
, “Screech in Transient Supersonic Jets,”
Phys. Fluids
, 34(9), p. 096102.10.1063/5.0102992
10.
Ishii
,
R.
,
Fujimoto
,
H.
,
Hatta
,
N.
, and
Umeda
,
Y.
,
1999
, “
Experimental and Numerical Analysis of Circular Pulse Jets
,”
J. Fluid Mech.
,
392
, pp.
129
153
.10.1017/S0022112099005303
11.
Radulescu
,
M. I.
, and
Law
,
C. K.
,
2007
, “
The Transient Start of Supersonic Jets
,”
J. Fluid Mech.
,
578
, pp.
331
369
.10.1017/S0022112007004715
12.
Poudel
,
S.
,
Chandrala
,
L.
,
Das
,
D.
, and
De
,
A.
,
2021
, “
Characteristics of Shock Tube Generated Compressible Vortex Rings at Very High Shock Mach Numbers
,”
Phys. Fluids
,
33
(
9
), p.
096105
.10.1063/5.0063164
13.
Ahmad
,
H.
,
Hasan
,
N.
, and
Sanghi
,
S.
,
2020
, “
On the Formation and Sustenance of the Compressible Vortex Rings in Starting Axisymmetric Jets: A Phenomenological Approach
,”
Phys. Fluids
,
32
(
12
), p.
126114
.10.1063/5.0029187
14.
Zhang
,
H. H.
,
Aubry
,
N.
,
Chen
,
Z. H.
,
Wu
,
W. T.
, and
Sha
,
S.
,
2019
, “
The Evolution of the Initial Flow Structures of a Highly Under-Expanded Circular Jet
,”
J. Fluid Mech.
,
871
, pp.
305
331
.10.1017/jfm.2019.285
15.
Zhang
,
H.
,
Chen
,
Z.
,
Li
,
B.
, and
Jiang
,
X.
,
2014
, “
The Secondary Vortex Rings of a Supersonic Underexpanded Circular Jet With Low Pressure Ratio
,”
Eur. J. Mech.-B/Fluids
,
46
, pp.
172
180
.10.1016/j.euromechflu.2014.03.016
16.
Haselbacher
,
A.
,
Balachandar
,
S.
, and
Kieffer
,
S.
,
2007
, “
Open-Ended Shock Tube Flows: Influence of Pressure Ratio and Diaphragm Position
,”
AIAA J.
,
45
(
8
), pp.
1917
1929
.10.2514/1.23081
17.
Srivastava
,
S.
,
Sheridan
,
A.
,
Henneke
,
M.
,
Raza
,
M. S.
, and
Sallam
,
K. A.
,
2022
, “
The Structure of Inclined Choked Gas Jet
,”
ASME J. Fluids Eng.
,
144
(
10
), p.
101301
.10.1115/1.4054139
18.
Adamson
,
T. C.
, Jr
,., and
Nicholls
,
J. A.
,
1959
, “
On the Structure of Jets From Highly Underexpanded Nozzles Into Still Air
,”
J. Aerosp. Sci.
,
26
(
1
), pp.
16
24
.10.2514/8.7912
19.
Crist
,
S.
,
Glass
,
D.
, and
Sherman
,
P.
,
1966
, “
Study of the Highly Underexpanded Sonic Jet
,”
AIAA J.
,
4
(
1
), pp.
68
71
.10.2514/3.3386
20.
Abbett
,
M.
,
1971
, “
Mach Disk in Underexpanded Exhaust Plumes
,”
AIAA J.
,
9
(
3
), pp.
512
514
.10.2514/3.6212
21.
Chang
,
I.
, and
Chow
,
W. L.
,
1974
, “
Mach Disk From Underexpanded Axisymmetric Nozzle Flow
,”
AIAA J.
,
12
(
8
), pp.
1079
1082
.10.2514/3.49415
22.
Addy
,
A.
,
1981
, “
Effects of Axisymmetric Sonic Nozzle Geometry on Mach Disk Characteristics
,”
AIAA J.
,
19
(
1
), pp.
121
122
.10.2514/3.7751
23.
Otobe
,
Y.
,
Kashimura
,
H.
,
Matsuo
,
S.
,
Setoguchi
,
T.
, and
Kim
,
H. D.
,
2008
, “
Influence of Nozzle Geometry on the Near-Field Structure of a Highly Underexpanded Sonic Jet
,”
J. Fluids Struct.
,
24
(
2
), pp.
281
293
.10.1016/j.jfluidstructs.2007.07.003
24.
Hatanaka
,
K.
, and
Saito
,
T.
,
2012
, “
Influence of Nozzle Geometry on Underexpanded Axisymmetric Free Jet Characteristics
,”
Shock Waves
,
22
(
5
), pp.
427
434
.10.1007/s00193-012-0391-x
25.
Franquet
,
E.
,
Perrier
,
V.
,
Gibout
,
S.
, and
Bruel
,
P.
,
2015
, “
Free Underexpanded Jets in a Quiescent Medium: A Review
,”
Prog. Aerosp. Sci.
,
77
, pp.
25
53
.10.1016/j.paerosci.2015.06.006
26.
Ashkenas
,
H.
, and
Sherman
,
F. S.
,
1965
,
“The Structure and Utilization of Supersonic Free Jets in Low Density Wind Tunnels,” Rarefied Gas Dynamics
, Volume 2, pp. 84–105.
27.
Ewan
,
B.
, and
Moodie
,
K.
,
1986
, “
Structure and Velocity Measurements in Underexpanded Jets
,”
Combust. Sci. Technol.
,
45
(
5–6
), pp.
275
288
.10.1080/00102208608923857
28.
Irie
,
T.
,
Yasunobu
,
T.
,
Kashimura
,
H.
, and
Setoguchi
,
T.
,
2003
, “
Characteristics of the Mach Disk in the Underexpanded Jet in Which the Back Pressure Continuously Changes With Time
,”
J. Therm. Sci.
,
12
(
2
), pp.
132
137
.10.1007/s11630-003-0054-4
29.
Haghdoost
,
M. R.
,
Edgington-Mitchell
,
D.
,
Nadolski
,
M.
,
Klein
,
R.
, and
Oberleithner
,
K.
,
2020
, “
Dynamic Evolution of a Transient Supersonic Trailing Jet Induced by a Strong Incident Shock Wave
,”
Phys. Rev. Fluids
,
5
(
7
), p.
073401
.10.1103/PhysRevFluids.5.073401
30.
Orescanin
,
M. M.
, and
Austin
,
J. M.
,
2010
, “
Exhaust of Underexpanded Jets From Finite Reservoirs
,”
J. Propul. Power
,
26
(
4
), pp.
744
753
.10.2514/1.47673
31.
Hamzehloo
,
A.
, and
Aleiferis
,
P.
,
2016
, “
Gas Dynamics and Flow Characteristics of Highly Turbulent Under-Expanded Hydrogen and Methane Jets Under Various Nozzle Pressure Ratios and Ambient Pressures
,”
Int. J. Hydrog. Energy
,
41
(
15
), pp.
6544
6566
.10.1016/j.ijhydene.2016.02.017
32.
Hamzehloo
,
A.
, and
Aleiferis
,
P.
,
2016
, “
Numerical Modelling of Transient Under-Expanded Jets Under Different Ambient Thermodynamic Conditions With Adaptive Mesh Refinement
,”
Int. J. Heat Fluid Flow
,
61
, pp.
711
729
.10.1016/j.ijheatfluidflow.2016.07.015
33.
Arakeri
,
J. H.
,
Das
,
D.
,
Krothapalli
,
A.
, and
Lourenço
,
L. M.
,
2004
, “
Vortex Ring Formation at the Open End of a Shock Tube: A Particle Image Velocimetry Study
,”
Phys. Fluids
,
16
(
4
), pp.
1008
1019
.10.1063/1.1649339
34.
Dora
,
C. L.
,
Saravanan
,
D.
,
Karunakar
,
K.
, and
Das
,
D.
,
2011
, “
Characteristics of Embedded-Shock-Free Compressible Vortex Rings: A Detailed Study Using Piv
,”
Adv. Mech. Eng.
,
3
, p.
650871
.10.1155/2011/650871
35.
Qin
,
L.
,
Xiang
,
Y.
,
Lin
,
H.
, and
Liu
,
H.
,
2020
, “
Formation and Dynamics of Compressible Vortex Rings Generated by a Shock Tube
,”
Exp. Fluids
,
61
(
3
), pp.
1
16
.10.1007/s00348-020-2920-1
36.
Xiang
,
Y.
,
Qin
,
L.
,
Qin
,
S.
, and
Liu
,
H.
,
2023
, “
Circulation Production Model and Unified Formation Number of Compressible Vortex Rings Generated by a Shock Tube
,”
Phys. Fluids
,
35
(
3
), p. 036121.10.1063/5.0142086
37.
Thangadurai
,
M.
, and
Das
,
D.
,
2010
, “
Characteristics of Counter-Rotating Vortex Rings Formed Ahead of a Compressible Vortex Ring
,”
Exp. Fluids
,
49
(
6
), pp.
1247
1261
.10.1007/s00348-010-0868-2
38.
Heylmun
,
J.
,
Vonk
,
P.
, and
Brewer
,
T.
,
2019
,
Blastfoam Theory and User Guide
, Synthetik Applied Technologies, LLC, accessed Dec. 12, 2023, https://github.com/synthetik-technologies/blastfoam.
39.
Liou
,
M.-S.
,
1996
, “
A Sequel to Ausm: Ausm+
,”
J. Comput. Phys.
,
129
(
2
), pp.
364
382
.10.1006/jcph.1996.0256
40.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Review Fluid Mech.
,
29
(
1
), pp.
123
160
.10.1146/annurev.fluid.29.1.123
41.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
, 130(7), p.
078001
.10.1115/1.2960953
42.
Chandrala
,
L. D.
,
2016
, “
Unsteady Evolution of Compressible Vortex Rings: Velocity, Density, and Acoustic Fields
,” Ph.D. thesis,
Indian Institute of Technology Kanpur
,
Kanpur, India
.
43.
Skews
,
B. W.
,
1967
, “
The Shape of a Diffracting Shock Wave
,”
J. Fluid Mech.
,
29
(
2
), pp.
297
304
.10.1017/S0022112067000825
44.
Sun
,
M.
, and
Takayama
,
K.
,
2003
, “
A Note on Numerical Simulation of Vortical Structures in Shock Diffraction
,”
Shock Waves
,
13
(
1
), pp.
25
32
.10.1007/s00193-003-0195-0
45.
Margha
,
L.
,
Hamada
,
A. A.
, and
Eltaweel
,
A.
,
2023
, “
Dynamic Transition of Unsteady Supersonic Flow From Mach to Regular Reflection Over a Moving Wedge
,”
ASME J. Fluids Eng.
,
145
(
9
), p.
091201
.10.1115/1.4062194
46.
Sharma
,
V.
,
Eswaran
,
V.
, and
Chakraborty
,
D.
,
2020
, “
Computational Analysis of Transverse Sonic Injection in Supersonic Crossflow Using Rans Models
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061502
.10.1115/1.4045985
47.
Chakraborty
,
P.
,
Balachandar
,
S.
, and
Adrian
,
R. J.
,
2005
, “
On the Relationships Between Local Vortex Identification Schemes
,”
J. Fluid Mech.
,
535
, pp.
189
214
.10.1017/S0022112005004726
48.
Gharib
,
M.
,
Rambod
,
E.
, and
Shariff
,
K.
,
1998
, “
A Universal Time Scale for Vortex Ring Formation
,”
J. Fluid Mech.
,
360
, pp.
121
140
.10.1017/S0022112097008410
49.
Ogden
,
D. E.
,
Wohletz
,
K. H.
,
Glatzmaier
,
G. A.
, and
Brodsky
,
E. E.
,
2008
, “
Numerical Simulations of Volcanic Jets: Importance of Vent Overpressure
,”
J. Geophys. Res.: Solid Earth
,
113
, p. B02204.10.1029/2007JB005133
50.
Young
,
W. S.
,
1975
, “
Derivation of the Free-Jet Mach-Disk Location Using the Entropy-Balance Principle
,”
Phys. Fluids
,
18
(
11
), pp.
1421
1425
.10.1063/1.861039
51.
Jiang
,
C.
,
Han
,
T.
,
Hu
,
S.
,
Gao
,
Z.
, and
Lee
,
C.-H.
,
2022
, “
Theoretical Prediction for the Mach-Disk Height in Two-Dimensional Supersonic Underexpanded Jets
,”
AIAA J.
,
60
(
4
), pp.
2115
2129
.10.2514/1.J060573
You do not currently have access to this content.