Abstract

Studies have shown that the runner speed of hydraulic turbines at no-load conditions is affected by cavitation. However, those studies did not provide explanations relating the variation of the no-load runner speed to cavitation. Understanding why cavitation affects the runner speed is crucial because the maximum runner speed is reached in no-load condition, and this speed must remain below a limit to ensure the generator's safety. This paper uses numerical simulations to investigate the effect of cavitation on two no-load conditions, the runaway and the speed-no-load, for a low specific speed Francis turbine at model scale. The study is based on unsteady Reynolds-averaged Navier–Stokes simulations with and without cavitation and focuses on averaged quantities. At no-load, the regions over the blades producing a motor torque, i.e., oriented with the turbine rotating direction, must be balanced by regions producing a braking torque, opposed to the turbine rotation, to achieve a zero-torque condition. At runaway, cavitation mainly affects regions where a motor torque is produced. However, the zones affected by cavitation have a small contribution to the total motor torque. Therefore, for the runaway condition studied, the torque balance over the blade is hardly affected by cavitation, and the impact of cavitation on the runaway speed is negligible. At speed-no-load, comparisons between cavitating and noncavitating simulations indicated that cavitation affects mainly the braking torque regions. Those regions result from an interaction between the runner blades and a backflow extending from the draft tube cone to the runner outlet. In that case, cavitation strongly affects the torque balance over the blades, and consequently, the runner speed will adapt to find another zero torque condition.

References

1.
Löfflad
,
J.
, and
Eissner
,
M.
,
2014
, “
Life Time Assessment and Plant Operation Optimization Based on Geometry Scan and Strain Gauge Testing – START/STOP Optimization
,”
10th International Conference on Hydraulic Efficiency Measurements
, Itajuba, Brasil, Sept. 16–18.http://www.ighem.org/Papers_IGHEM/399.pdf
2.
Titzschkau
,
M.
,
Hasmatuchi
,
V.
,
Decaix
,
J.
, and
Münch
,
C.
,
2019
, “
On-Board Measurements at a 100 MW High-Head Francis Turbine
,”
Wasserwirtschaft
,
109
(
S1
), pp.
60
65
.10.1007/s35147-019-0236-y
3.
Monette
,
C.
,
Marmont
,
H.
,
Chamberland-Lauzon
,
J.
,
Skagerstrand
,
A.
,
Coutu
,
A.
, and
Carlevi
,
J.
,
2016
, “
Cost of Enlarged Operating Zone for an Existing Francis Runner
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
, p.
072018
.10.1088/1755-1315/49/7/072018
4.
Fortin
,
M.
,
Nennemann
,
B.
,
Deschênes
,
C.
, and
Houde
,
S.
,
2022
, “
Classification of the Hydraulic Behavior Along the No-Load Curve of Francis Turbines
,”
ASME J. Fluids Eng.
,
144
(
3
), p.
031205
.10.1115/1.4051895
5.
Skotak
,
A.
,
1996
, “
Modelling of the Swirl Flow in a Kaplan Turbine Operating Under Off-Cam Conditions
,”
Aqua-Media International
,
Lausanne, Switzerland
, pp.
197
204
.
6.
Ishii
,
Y.
,
1962
, “
The Two Types of Runaway State of Propeller Turbine Under Cavitation
,”
IAHR Symposium on Cavitation and Hydraulic Machinery
,
Sendai, Japan
.
7.
International Electrotechnical Commission
,
2019
,
Hydraulic Turbines, Storage Pumps and Pump-Turbines - Model Acceptance Tests
,
International Electrotechnical Commission
, Standard No. IEC 60193.
8.
Jacob
,
T.
,
1993
, “
Evaluation Sur Modèle Réduit et Prédiction de La Stabilité de Fonctionnement Des Turbines Francis
,” Ph.D. thesis,
École polytechnique fédérale de Lausanne, Lausanne, Switzerland
.
9.
Dörfler
,
P.
,
Sick
,
M.
, and
Coutu
,
A.
,
2012
,
Flow-Induced Pulsation and Vibration in Hydroelectric Machinery: Engineer's Guidebook for Planning, Design and Troubleshooting
,
Springer
,
New York
.
10.
Nicolle
,
J.
,
Morissette
,
J. F.
, and
Giroux
,
A. M.
,
2012
, “
Transient CFD Simulation of a Francis Turbine Startup
,”
IOP Conf. Ser. Earth Environ. Sci.
,
15
(
6
), p.
062014
.10.1088/1755-1315/15/6/062014
11.
Trivedi
,
C.
,
2018
, “
Compressible Large Eddy Simulation of a Francis Turbine During Speed-No-Load: Rotor Stator Interaction and Inception of a Vortical Flow
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), p.
112601
.10.1115/1.4039423
12.
Mende
,
C.
,
Weber
,
W.
, and
Seidel
,
U.
,
2016
, “
Progress in Load Prediction for Speed-No-Load Operation in Francis Turbines
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
, p.
062017
.10.1088/1755-1315/49/6/062017
13.
Bettocchi
,
R.
,
Cantore
,
G.
,
Magri
,
L.
, and
Ubaldi
,
M.
,
1982
, “
Analyse Expérimentale de L'écoulement Dans La Zone Axiale Des Canaux Adducteurs Des Turbines-Hélices
,”
Houille Blanche
,
68
(
7–8
), pp.
599
606
.10.1051/lhb/1982046
14.
Fortin
,
M.
,
Nennemann
,
B.
,
Houde
,
S.
, and
Deschênes
,
C.
,
2019
, “
Numerical Study of the Flow Dynamics at No-Load Operation for a High Head Francis Turbine at Model Scale
,”
IOP Conf. Ser. Earth Environ. Sci.
,
240
, p.
022023
.10.1088/1755-1315/240/2/022023
15.
Côté
,
P.
,
2015
, “
Investigation of the Self-Excited Vibrations in a Francis Runner in Transient Conditions of Load Rejection
,” M.Sc. thesis,
Université Laval
,
Québec, Canada
.
16.
Hosseinimanesh
,
H.
,
Devals
,
C.
,
Nennemann
,
B.
,
Reggio
,
M.
, and
Guibault
,
F.
,
2016
, “
A Numerical Study of Francis Turbine Operation at No-Load Condition
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011104
.10.1115/1.4034422
17.
Fortin
,
M.
,
Nennemann
,
B.
,
Deschênes
,
C.
, and
Houde
,
S.
,
2021
, “
Evolution of Discharge and Runner Rotation Speed Along No-Load Curves of Francis Turbines
,”
IOP Conf. Ser. Earth Environ. Sci.
,
774
(
1
), p.
012121
.10.1088/1755-1315/774/1/012121
18.
Nennemann
,
B.
,
Vu
,
T. C.
, and
Farhat
,
M.
,
2005
, “
CFD Prediction of Unsteady Wicket Gate-Runner Interaction in Francis Turbines: A New Standard Hydraulic Design Procedure
,”
Hydro 2005
, Austria, Oct. 17–20.https://www.researchgate.net/publication/37439188_CFD_prediction_of_unsteady_wicket_gate-runner_interaction_in_Francis_turbines_A_new_standard_hydraulic_design_procedure
19.
ANSYS Academic Research
,
2009
,
ANSYS CFX Solver Modeling Guide
,
ANSYS Academic Research
.
20.
ANSYS Academic Research
,
2009
,
ANSYS CFX Solver Theory Guide
,
ANSYS Academic Research
.
21.
Rhie
,
C.
, and
Chow
,
W.
,
1982
, “
A Numerical Study of the Turbulent Flow Past an Isolated Airfoil With Trailing Edge Separation
,”
3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference
,
American Institute of Aeronautics and Astronautics, June 7–11
.
22.
Decaix
,
J.
,
Hasmatuchi
,
V.
,
Titzschkau
,
M.
, and
Münch-Alligné
,
C.
,
2018
, “
CFD Investigation of a High Head Francis Turbine at Speed No-Load Using Advanced URANS Models
,”
Appl. Sci.
,
8
(
12
), 2505.10.3390/app8122505
23.
Nennemann
,
B.
,
Morissette
,
J. F.
,
Chamberland-Lauzon
,
J.
,
Monette
,
C.
,
Braun
,
O.
,
Melot
,
M.
,
Coutu
,
A.
,
Nicolle
,
J.
, and
Giroux
,
A. M.
,
2014
, “
Challenges in Dynamic Pressure and Stress Predictions at No-Load Operation in Hydraulic Turbines
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(
3
), p.
032055
.10.1088/1755-1315/22/3/032055
24.
Pacot
,
O.
,
Kato
,
C.
,
Guo
,
Y.
,
Yamade
,
Y.
, and
Avellan
,
F.
,
2016
, “
Large Eddy Simulation of the Rotating Stall in a Pump-Turbine Operated in Pumping Mode at a Part-Load Condition
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
111102
.10.1115/1.4033423
25.
Menter
,
F.
, and
Egorov
,
Y.
,
2005
, “
A Scale Adaptive Simulation Model Using Two-Equation Models
,”
AIAA
Paper No.
2005
1095
.10.2514/6.2005-1095
26.
Menter
,
F. R.
,
Schütze
,
J.
, and
Gritskevich
,
M.
,
2012
, “
Global vs. Zonal Approaches in Hybrid RANS-LES Turbulence Modelling
,”
S.
Fu
,
W.
Haase
,
S.-H.
Peng
, and
D.
Schwamborn
, eds.,
Progress in Hybrid RANS-LES Modelling
,
Springer
,
Berlin Heidelberg
, pp.
15
28
.
27.
Yamamoto
,
K.
,
Müller
,
A.
,
Favrel
,
A.
,
Landry
,
C.
, and
Avellan
,
F.
,
2016
, “
Numerical and Experimental Evidence of the Inter-Blade Cavitation Vortex Development at Deep Part Load Operation of a Francis Turbine
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
, p.
082005
.10.1088/1755-1315/49/8/082005
28.
Mössinger
,
P.
, and
Jung
,
A.
,
2016
, “
Transient Two-Phase CFD Simulation of Overload Operating Conditions and Load Rejection in a Prototype Sized Francis Turbine
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
, p.
092003
.10.1088/1755-1315/49/9/092003
29.
Neto
,
A. D. A.
,
Jester-Zuerker
,
R.
,
Jung
,
A.
, and
Maiwald
,
M.
,
2012
, “
Evaluation of a Francis Turbine Draft Tube Flow at Part Load Using Hybrid RANS-LES Turbulence Modelling
,”
IOP Conf. Ser. Earth Environ. Sci.
,
15
(
6
), p.
062010
.10.1088/1755-1315/15/6/062010
30.
Morissette
,
J.-F.
,
Chamberland-Lauzon
,
J.
,
Nennemann
,
B.
,
Monette
,
C.
,
Giroux
,
A.-M.
,
Coutu
,
A.
, and
Nicolle
,
J.
,
2016
, “
Stress Predictions in a Francis Turbine at No-Load Operating Regime
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
, p.
072016
.10.1088/1755-1315/49/7/072016
31.
Houde
,
S.
,
Dumas
,
G.
, and
Deschênes
,
C.
,
2018
, “Experimental and Numerical Investigations on the Origins of Rotating Stall in a Propeller Turbine Runner Operating in No-Load Conditions,”
ASME J. Fluids Eng.
, 140(11), p.
111104
.10.1115/1.4039713
32.
Hasmatuchi
,
V.
,
2012
, “
Hydrodynamics of a Pump-Turbine Operating at Off-Design Conditions in Generating Mode
,”
EPFL
, Ph.D. thesis,
Lausanne, Switzerland
.
33.
Zwart
,
P.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase. Flow
and Heat Transfer, Yokohama, Japan, May 30–June 3, Paper No. 152.
34.
Goncalvès
,
E.
, and
Patella
,
R. F.
,
2011
, “
Constraints on Equation of State for Cavitating Flows With Thermodynamic Effects
,”
Numer. Anal. Fluid Flow Heat Transfer
,
217
(
11
), pp.
5095
5102
.10.1016/j.amc.2010.07.056
35.
Ji
,
B.
,
Luo
,
X.
,
Wu
,
Y.
,
Peng
,
X.
, and
Duan
,
Y.
,
2013
, “
Numerical Analysis of Unsteady Cavitating Turbulent Flow and Shedding Horse-Shoe Vortex Structure Around a Twisted Hydrofoil
,”
Int. J. Multiph. Flow
,
51
, pp.
33
43
.10.1016/j.ijmultiphaseflow.2012.11.008
36.
Zhang
,
G.
,
Shi
,
W.
,
Zhou
,
L.
, and
Zhang
,
D.
,
2015
, “
Effect of the Maximum Density Ratio Between Liquid and Vapor on Cavitating Simulation
,”
Am. J. Eng. Appl. Sci.
,
8
(
1
), pp.
119
126
.10.3844/ajeassp.2015.119.126
37.
Mössinger
,
P.
,
Conrad
,
P.
, and
Jung
,
A.
,
2014
, “
Transient Two-Phase CFD Simulation of Overload Pressure Pulsation in a Prototype Sized Francis Turbine Considering the Waterway Dynamics
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
, p.
032033
.10.1088/1755-1315/22/3/032033
38.
Nennemann
,
B.
, and
Braun
,
O.
,
2015
,
The Role of Unsteady Flow Simulation in Francis Turbine Development
,
Bordeaux, France
.
39.
Wack
,
J.
, and
Riedelbauch
,
S.
,
2021
, “
On the Physical Mechanisms That Cause the Full Load Instability in Francis Turbines
,”
IOP Conf. Ser. Earth Environ. Sci.
,
774
(
1
), p.
012022
.10.1088/1755-1315/774/1/012022
40.
Wack
,
J.
, and
Riedelbauch
,
S.
,
2016
, “
Two-Phase Simulations of the Full Load Surge in Francis Turbines
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
49
, p.
092004
.10.1088/1755-1315/49/9/092004
41.
Yamamoto
,
K.
,
2017
, “
Hydrodynamics of Francis Turbine Operation at Deep Part Load Condition
,” EPFL, Ph.D. thesis, Lausanne, Switzerland, p.
175
.
42.
Wack
,
J.
, and
Riedelbauch
,
S.
,
2015
, “
Numerical Simulations of the Cavitation Phenomena in a Francis Turbine at Deep Part Load Conditions
,”
J. Phys.: Conf. Ser.
,
656
, p.
012074
.10.1088/1742-6596/656/1/012074
43.
Wack
,
J.
,
Riedelbauch
,
S.
,
Yamamoto
,
K.
, and
Avellan
,
F.
,
2016
, “
Two-Phase Flow Simulations of the Inter-Blade Vortices in a Francis Turbine
,”
Ninth International Conference on Multiphase Flow
, Florence, Italy, May 22–27.https://www.researchgate.net/publication/340647957_Twophase_flow_simulations_of_the_inter-blade_vortices_in_a_Francis_turbine
44.
Wack
,
J.
, and
Riedelbauch
,
S.
,
2017
, “
Numerical Simulation of a Cavitating Draft Tube Vortex Rope in a Francis Turbine at Part Load Conditions for Different σ-Levels
,”
J. Phys.: Conf. Ser.
,
813
(
1
), p.
012019
.10.1088/1742-6596/813/1/012019
45.
Payette
,
F.-A.
,
2008
, “
Simulation de L'écoulement Turbulent Dans Les Aspirateurs de Turbines Hydrauliques: Impact Des Paramètres de Modélisation
,” Master thesis,
Université Laval
,
Québec, Canada
.
46.
Mauri
,
S.
,
2002
, “
Numerical Simulation and Flow Analysis of an Elbow Diffuser
,” École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland
.
47.
Hosseinimanesh
,
H.
,
2016
, “
3D Numerical Modeling of Transient Conditions in Francis Turbines
,” Ph.D. thesis,
Polytechnique Montréal
,
Montréal, QC, Canada
.
48.
Nicolle
,
J.
, and
Morissette
,
J.-F.
,
2016
, “
Simulation of Air Admission in a Propeller Hydroturbine During Transient Events
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
, p.
072008
.10.1088/1755-1315/49/7/072008
49.
Morissette
,
J. F.
, and
Nicolle
,
J.
,
2019
, “
Simulation of Stochastic Pressure Loads on a Medium Head Francis Runner
,”
IOP Conf. Ser. Earth Environ. Sci.
,
405
(
1
), p.
012027
.10.1088/1755-1315/405/1/012027
50.
Melot
,
M.
,
Coulaud
,
M.
,
Chamberland-Lauzon
,
J.
,
Nennemann
,
B.
, and
Deschênes
,
C.
,
2018
, “
Hydraulic Turbine Start-Up: A Fluid-Structure Simulation Methodology
,”
IOP Conf. Ser.: Earth Environ. Sci.
240
, p.
022024
.10.1088/1755-1315/240/2/022024
51.
Fortin
,
M.
,
Houde
,
S.
, and
Deschênes
,
C.
,
2018
, “
A Hydrodynamic Study of a Propeller Turbine During a Transient Runaway Event Initiated at the Best Efficiency Point
,”
ASME J. Fluids Eng.
, 140(12), p.
121103
.10.1115/1.4040232
52.
Krappel
,
T.
,
Ruprecht
,
A.
,
Riedelbauch
,
S.
,
Jester-Zuerker
,
R.
, and
Jung
,
A.
,
2014
, “
Investigation of Francis Turbine Part Load Instabilities Using Flow Simulations With a Hybrid RANS-LES Turbulence Model
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(
3
), p.
032001
.10.1088/1755-1315/22/3/032001
53.
Wack
,
J.
,
2020
, “
Numerical Investigation of the Full Load Instability in AFrancis Turbine
,” Ph.D. thesis,
Universität Stuttgart Institut für Strömungsmechanik und Hydraulische Strömungsmaschinen
,
Stuttgart, Germany
.
54.
Goncalves
,
É.
,
2017
, “
Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines: Turbopump and Inducer Cavitation, Experiments and Design
,” Numerical Simulation of Cavitating Flow With Different Cavitation and Turbulence Models,
Springer
,
Cham, Switzerland
, pp.
179
234
.
You do not currently have access to this content.