Abstract

Buoyant wakes encountered in the ocean environment are characterized by high Reynolds (Re) and Froude (Fr) numbers, leading to significant space–time resolution requirements for turbulence resolving CFD models (i.e., direct numerical simulations (DNS), large eddy simulations (LES)). Therefore, Reynolds-averaged Navier–Stokes (RANS) based models are attractive for these configurations. The inherently complex dynamics of stratified systems render eddy-viscosity-based modeling inappropriate. RANS second-moment closure (SMC) based modeling is more suitable because it accounts for flow anisotropy by solving the transport equations of important second-moment terms. Accordingly, eleven transport equations are solved at the SMC level, and a range of submodels are implemented for diffusion, pressure strain and scrambling, and dissipation terms. This work studies nonstratified and stratified towed wakes using SMC and DNS. Submodels in the SMC are evaluated in terms of how well their exact Reynolds averaged form impacts the accuracy of the full RANS closure. An ensemble average of 40 and 80–100 DNS realizations are required and conducted for these temporally evolving nonstratified and stratified wakes, respectively, to obtain converged higher-order statistics. SMC over-predicts wake height by over a factor of 2, and under-predicts defect velocity, wake width, and turbulent kinetic and potential energies by factors ranging from 1.3 to 3.5. Also, SMC predicts a near isotropic decay of normal Reynolds stresses (a330.25), in contrast to the anisotropic decay (a330.64) returned by DNS. The DNS data also provide important insights related to the inaccuracy of the dissipation rate isotropy assumption and the non-negligible contribution of pressure diffusion terms. These results lead to several important recommendations for SMC modeling improvement.

References

1.
Lin
,
J.-T.
, and
Pao
,
Y.-H.
,
1979
, “
Wakes in Stratified Fluids
,”
Annu. Rev. Fluid Mech.
,
11
(
1
), pp.
317
338
.10.1146/annurev.fl.11.010179.001533
2.
Spedding
,
G.
,
Browand
,
F.
, and
Fincham
,
A.
,
1996
, “
Turbulence, Similarity Scaling and Vortex Geometry in the Wake of a Towed Sphere in a Stably Stratified Fluid
,”
J. Fluid Mech.
,
314
, pp.
53
103
.10.1017/S0022112096000237
3.
Spedding
,
G.
,
1997
, “
The Evolution of Initially Turbulent Bluff-Body Wakes at High Internal Froude Number
,”
J. Fluid Mech.
,
337
, pp.
283
301
.10.1017/S0022112096004557
4.
Bonnier
,
M.
, and
Eiff
,
O.
,
2002
, “
Experimental Investigation of the Collapse of a Turbulent Wake in a Stably Stratified Fluid
,”
Phys. Fluids
,
14
(
2
), pp.
791
801
.10.1063/1.1429963
5.
Spedding
,
G.
,
2002
, “
Vertical Structure in Stratified Wakes With High Initial Froude Number
,”
J. Fluid Mech.
,
454
, pp.
71
112
.10.1017/S0022112001007182
6.
Dommermuth
,
D. G.
,
Rottman
,
J. W.
,
Innis
,
G. E.
, and
Novikov
,
E. A.
,
2002
, “
Numerical Simulation of the Wake of a Towed Sphere in a Weakly Stratified Fluid
,”
J. Fluid Mech.
,
473
, pp.
83
101
.10.1017/S0022112002002276
7.
Brucker
,
K. A.
, and
Sarkar
,
S.
,
2010
, “
A Comparative Study of Self-Propelled and Towed Wakes in a Stratified Fluid
,”
J. Fluid Mech.
,
652
, pp.
373
404
.10.1017/S0022112010000236
8.
de Stadler
,
M. B.
,
Sarkar
,
S.
, and
Brucker
,
K. A.
,
2010
, “
Effect of the Prandtl Number on a Stratified Turbulent Wake
,”
Phys. Fluids
,
22
(
9
), p.
095102
.10.1063/1.3478841
9.
Diamessis
,
P. J.
,
Spedding
,
G. R.
, and
Domaradzki
,
J. A.
,
2011
, “
Similarity Scaling and Vorticity Structure in High-Reynolds-Number Stably Stratified Turbulent Wakes
,”
J. Fluid Mech.
,
671
, pp.
52
95
.10.1017/S0022112010005549
10.
Redford
,
J.
,
Lund
,
T.
, and
Coleman
,
G.
,
2015
, “
A Numerical Study of a Weakly Stratified Turbulent Wake
,”
J. Fluid Mech.
,
776
, pp.
568
609
.10.1017/jfm.2015.324
11.
Yang
,
X. I.
, and
Griffin
,
K. P.
,
2021
, “
Grid-Point and Time-Step Requirements for Direct Numerical Simulation and Large-Eddy Simulation
,”
Phys. Fluids
,
33
(
1
), p.
015108
.10.1063/5.0036515
12.
Li
,
J.-Q. J.
,
Yang
,
X. I.
, and
Kunz
,
R. F.
,
2022
, “
Grid-Point and Time-Step Requirements for Large-Eddy Simulation and Reynolds-Averaged Navier–Stokes of Stratified Wakes
,”
Phys. Fluids
,
34
(
11
), p.
115125
.10.1063/5.0127487
13.
Wall
,
D.
, and
Paterson
,
E.
,
2020
, “
Anisotropic Rans Turbulence Modeling for Wakes in an Active Ocean Environment
,”
Fluids
,
5
(
4
), p.
248
.10.3390/fluids5040248
14.
Wilcox
,
D.
,
2006
,
Turbulence Modeling for CFD
, 3rd ed.,
DCW Industries
,
La Cañada, CA
.
15.
Sommer
,
T.
,
So
,
R.
, and
Zhang
,
J.
,
1997
, “
Modeling Nonequilibrium and History Effects of Homogeneous Turbulence in a Stably Stratified Medium
,”
Int. J. Heat Fluid Flow
,
18
(
1
), pp.
29
37
.10.1016/S0142-727X(96)00140-3
16.
Eisfeld
,
B.
,
2021
, “
Characteristics of Incompressible Free Shear Flows and Implications for Turbulence Modeling
,”
AIAA J.
,
59
(
1
), pp.
180
195
.10.2514/1.J059654
17.
Jain
,
N.
,
Pham
,
H.
,
Huang
,
X.
,
Sarkar
,
S.
,
Yang
,
X.
, and
Kunz
,
R. F.
,
2022
, “
Second Moment Closure Modeling and DNS of Stratified Shear Layers
,”
ASME J. Fluids Eng.
,
144
(
4
), 041102.10.1115/1.4053444
18.
Kunz
,
R.
,
Yu
,
W.-S.
,
Antal
,
S.
, and
Ettorre
,
S.
,
2001
, “
An Unstructured Two-Fluid Method Based on the Coupled Phasic Exchange Algorithm
,”
AIAA
Paper No.
2001
2672
.10.2514/6.2001-2672
19.
Van Der Poel
,
E. P.
,
Ostilla-Mónico
,
R.
,
Donners
,
J.
, and
Verzicco
,
R.
,
2015
, “
A Pencil Distributed Finite Difference Code for Strongly Turbulent Wall-Bounded Flows
,”
Comput. Fluids
,
116
, pp.
10
16
.10.1016/j.compfluid.2015.04.007
20.
Bin
,
Y.
,
Yang
,
X. I.
,
Yang
,
Y.
,
Ni
,
R.
, and
Shi
,
Y.
,
2022
, “
Evolution of Two Counter-Rotating Vortices in a Stratified Turbulent Environment
,”
J. Fluid Mech.
,
951
, p.
A47
.10.1017/jfm.2022.905
21.
Huang
,
X. L.
,
Kunz
,
R. F.
, and
Yang
,
X. I.
,
2023
, “
Linear Logistic Regression With Weight Thresholding for Flow Regime Classification of a Stratified Wake
,”
Theor. Appl. Mech. Lett.
,
13
(
2
), p.
100414
.10.1016/j.taml.2022.100414
22.
Voropaeva
,
O.
,
Druzhinin
,
O.
, and
Chernykh
,
G.
,
2016
, “
Numerical Simulation of Momentumless Turbulent Wake Dynamics in Linearly Stratified Medium
,”
J. Eng. Thermophys.
,
25
(
1
), pp.
85
99
.10.1134/S1810232816010082
23.
Clift
,
S. S.
, and
Forsyth
,
P. A.
,
1994
, “
Linear and Non-Linear Iterative Methods for the Incompressible Navier-Stokes Equations
,”
Int. J. Numer. Methods Fluids
,
18
(
3
), pp.
229
256
.10.1002/fld.1650180302
24.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the Simple Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.10.1080/01495728408961817
25.
Rhie
,
C.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.10.2514/3.8284
26.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
,
1991
, “
Modelling the Pressure–Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
J. Fluid Mech.
,
227
, pp.
245
272
.10.1017/S0022112091000101
27.
Launder
,
B.
,
1975
, “
On the Effects of a Gravitational Field on the Turbulent Transport of Heat and Momentum
,”
J. Fluid Mech.
,
67
(
3
), pp.
569
581
.10.1017/S002211207500047X
28.
Gibson
,
M.
, and
Launder
,
B.
,
1978
, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
,
86
(
3
), pp.
491
511
.10.1017/S0022112078001251
29.
Shir
,
C.
,
1973
, “
A Preliminary Numerical Study of Atmospheric Turbulent Flows in the Idealized Planetary Boundary Layer
,”
J. Atmos. Sci.
,
30
(
7
), pp.
1327
1339
.10.1175/1520-0469(1973)030<1327:APNSOA>2.0.CO;2
30.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.10.1017/S0022112075001814
31.
Haren
,
L. V.
,
1993
, “
Etude Théorique et Modélisation de la Turbulence en Présence D'ondes Internes
,” Ph.D. thesis,
Ecole Centrale de Lyon
,
France
.
32.
Gourlay
,
M. J.
,
Arendt
,
S.
,
Fritts
,
D.
, and
Werne
,
J.
,
2001
, “
Numerical Modeling of Initially Turbulent Wakes With Net Momentum
,”
Phys. Fluids
,
13
(
12
), pp.
3783
3802
.10.1063/1.1412246
33.
Hassid
,
S.
,
1980
, “
Collapse of Turbulent Wakes in Stably Stratified Media
,”
J. Hydronaut.
,
14
(
1
), pp.
25
32
.10.2514/3.48175
34.
Jain
,
N.
,
2023
, “
Second Moment Closure Modeling of Stratified Shear Layers and Wakes
,” Ph.D. thesis,
The Pennsylvania State University
, University Park, TX.
35.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
36.
Strasser
,
W.
,
Battaglia
,
F.
, and
Walters
,
K.
,
2015
, “
Application of a Hybrid RANS-LES CFD Methodology to Primary Atomization in a Coaxial Injector
,”
ASME
Paper No. IMECE2015-53028.10.1115/IMECE2015-53028
37.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2008
, “
A Hybrid Rans-Les Approach With Delayed-Des and Wall-Modelled Les Capabilities
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1638
1649
.10.1016/j.ijheatfluidflow.2008.07.001
You do not currently have access to this content.