Abstract

An accurate prediction method of cavitation surge is desired to design a reliable turbopump for rocket engines that allow complex operational sequences such as controlled reentry and landing. Therefore, the paper aims to develop a novel model that enables accurate predictions of both frequency and onset of cavitation surge by considering dynamic characteristics of cavitation compliance K and mass flow gain factor M. The paper conducts both experimental and numerical studies in an inducer known to cause cavitation surge. First, characteristics of cavitation surge including frequency and occurrence conditions are experimentally surveyed. Secondary, K and M for the studied inducer are numerically obtained by steady RANS simulations. Then, the one-dimensional model is initially established based on the premises acquired by performed experiments and applied to cavitation surge predictions using quasi-statically evaluated K and M. As a result of comparisons with experiments, the cavitation surge frequency is adequately evaluated by the established model, whereas the cavitation surge onset fails to be estimated only using quasi-static parameters. The new model is thus proposed by including dynamic characteristics of K and M, and it is mathematically clarified that phase properties of K and M may play a key role to trigger cavitation surge. By presuming adequate values of dynamic characteristics based on past literatures, consequently, the developed model succeeds in accurate predictions of the cavitation surge onset in the experiment. This evidences that dynamic characteristics of K and M are essential to predict cavitation surge quantitatively.

References

1.
Kamijo
,
K.
,
Yoshida
,
M.
, and
Tsujimoto
,
Y.
,
1993
, “
Hydraulic and Mechanical Performance of LE-7 LOX Pump Inducer
,”
J. Propul. Power
,
9
(
6
), pp.
819
826
.10.2514/3.23695
2.
Arndt
,
R. E.
,
1981
, “
Cavitation in Fluid Machinery and Hydraulic Structures
,”
Annu. Rev. Fluid Mech.
,
13
(
1
), pp.
273
326
.10.1146/annurev.fl.13.010181.001421
3.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
4.
Avellan
,
F.
,
2004
, “
Introduction to Cavitation in Hydraulic Machinery
,”
Proceedings of the Sixth International Conference on Hydraulic Machinery and Hydrodynamics
,
Timisoara, Romania
, Oct.
21
22
.https://www.researchgate.net/publication/313526026_Introduction_to_cavitation_in_hydraulic_machinery
5.
Ji
,
B.
,
Luo
,
X.
,
Arndt
,
R. E.
,
Peng
,
X.
, and
Wu
,
Y.
,
2015
, “
Large Eddy Simulation and Theoretical Investigations of the Transient Cavitating Vortical Flow Structure Around a naca66 Hydrofoil
,”
Int. J. Multiphase Flow
,
68
, pp.
121
134
.10.1016/j.ijmultiphaseflow.2014.10.008
6.
Pendar
,
M.-R.
, and
Roohi
,
E.
,
2018
, “
Cavitation Characteristics Around a Sphere: An Les Investigation
,”
Int. J. Multiphase Flow
,
98
, pp.
1
23
.10.1016/j.ijmultiphaseflow.2017.08.013
7.
Le
,
A. D.
,
Okajima
,
J.
, and
Iga
,
Y.
,
2019
, “
Modification of Energy Equation for Homogeneous Cavitation Simulation With Thermodynamic Effect
,”
ASME J. Fluids Eng.
,
141
(
8
), p. 081102.10.1115/1.4042257
8.
Cervone
,
A.
,
Testa
,
R.
,
Bramanti
,
C.
,
Rapposelli
,
E.
, and
d'Agostino
,
L.
,
2005
, “
Thermal Effects on Cavitation Instabilities in Helical Inducers
,”
J. Propul. Power
,
21
(
5
), pp.
893
899
.10.2514/1.12582
9.
Kim
,
J.
, and
Song
,
S. J.
,
2019
, “
Visualization of Rotating Cavitation Oscillation Mechanism in a Turbopump Inducer
,”
ASME J. Fluids Eng.
,
141
(
9
), p. 091103.10.1115/1.4042884
10.
Hadavandi
,
R.
,
Pace
,
G.
,
Valentini
,
D.
,
Pasini
,
A.
, and
d'Agostino
,
L.
,
2020
, “
Identification of Cavitation Instabilities on a Three-Bladed Inducer by Means of Strain Gages
,”
ASME J. Fluids Eng.
,
142
(
2
), p. 021210.10.1115/1.4045186
11.
Coutier-Delgosha
,
O.
,
Courtot
,
Y.
,
Joussellin
,
F.
, and
Reboud
,
J.-L.
,
2004
, “
Numerical Simulation of the Unsteady Cavitation Behavior of an Inducer Blade Cascade
,”
AIAA J.
,
42
(
3
), pp.
560
569
.10.2514/1.9110
12.
Hosangadi
,
A.
,
Ahuja
,
V.
, and
Ungewitter
,
R.
,
2007
, “
Simulations of Rotational Cavitation Instabilities in the SSME LPFP Inducer
,”
AIAA
Paper No.
2007
5536
.10.2514/6.2007-5536
13.
Tani
,
N.
,
Yamanishi
,
N.
, and
Tsujimoto
,
Y.
,
2012
, “
Influence of Flow Coefficient and Flow Structure on Rotational Cavitation in Inducer
,”
ASME J. Fluids Eng.
,
134
(
2
), p. 021302.10.1115/1.4005903
14.
Brennen
,
C.
, and
Acosta
,
A.
,
1976
, “
The Dynamic Transfer Function for a Cavitating Inducer
,”
ASME J. Fluids Eng.
,
98
(
2
), pp.
182
191
.10.1115/1.3448255
15.
Ng
,
S.
, and
Brennen
,
C.
,
1978
, “
Experiments on the Dynamic Behavior of Cavitating Pumps
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
166
176
.10.1115/1.3448625
16.
Brennen
,
C.
,
Meissner
,
C.
,
Lo
,
E.
, and
Hoffman
,
G.
,
1982
, “
Scale Effects in the Dynamic Transfer Functions for Cavitating Inducers
,”
ASME J. Fluids Eng.
,
104
(
4
), pp.
428
433
.10.1115/1.3241875
17.
Otsuka
,
S.
,
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Furuya
,
O.
,
1996
, “
Frequency Dependence of Mass Flow Gain Factor and Cavitation Compliance of Cavitating Inducers
,”
ASME J. Fluids Eng.
,
118
(
2
), pp.
400
408
.10.1115/1.2817392
18.
Yonezawa
,
K.
,
Aono
,
J.
,
Kang
,
D.
,
Horiguchi
,
H.
,
Kawata
,
Y.
, and
Tsujimoto
,
Y.
,
2012
, “
Numerical Evaluation of Dynamic Transfer Matrix and Unsteady Cavitation Characteristics of an Inducer
,”
Int. J. Fluid Mach. Syst.
,
5
(
3
), pp.
126
133
.10.5293/IJFMS.2012.5.3.126
19.
Ashida
,
T.
,
Yamamoto
,
K.
,
Yonezawa
,
K.
,
Horiguchi
,
H.
,
Kawata
,
Y.
, and
Tsujimoto
,
Y.
,
2017
, “
Measurement of Dynamic Characteristics of an Inducer in Cavitating Conditions
,”
Int. J. Fluid Mach. Syst.
,
10
(
3
), pp.
307
317
.10.5293/IJFMS.2017.10.3.307
20.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Brennen
,
C. E.
,
2001
, “
Unified Treatment of Flow Instabilities of Turbomachines
,”
J. Propul. Power
,
17
(
3
), pp.
636
643
.10.2514/2.5790
21.
Nanri
,
H.
,
Tani
,
N.
,
Kannan
,
H.
, and
Yoshida
,
Y.
,
2010
, “
Analysis of Cavitation Surge Considering the Acoustic Effect of the Inlet Line in a Rocket Engine Turbopump
,”
ASME
Paper No. FEDSM-ICNMM2010-30434
.10.1115/FEDSM-ICNMM2010-30434
22.
Kang
,
D.
, and
Yokota
,
K.
,
2014
, “
Analytical Study of Cavitation Surge in a Hydraulic System
,”
ASME J. Fluids Eng.
,
136
(
10
), p.
7
.10.1115/1.4027220
23.
Kawasaki
,
S.
,
Shimura
,
T.
,
Uchiumi
,
M.
, and
Iga
,
Y.
,
2018
, “
One-Dimensional Analysis Method for Cavitation Instabilities of a Rotating Machinery
,”
ASME J. Fluids Eng.
,
140
(
2
), p. 021113.10.1115/1.4037987
24.
Watanabe
,
S.
, and
Tsujimoto
,
Y.
,
2021
, “
Prediction of Cavitation Surge Onset Point by One-Dimensional Stability Analysis
,”
Int. J. Fluid Mach. Syst.
,
14
(
2
), pp.
199
207
.10.5293/IJFMS.2021.14.2.199
25.
Brennen
,
C.
,
1994
,
Hydrodynamics of Pumps
,
Cambridge University Press
, New York.
26.
Tamura
,
K.
,
Kondou
,
S.
,
Kawasaki
,
S.
, and
Iga
,
Y.
,
2020
, “
Onset Characteristics of Cavitation Instabilities in Rocket Engine Inducers Under Off-Design Operations (in Japanese)
,”
Proceedings of 77th Meeting in Turbomachinery Society of Japan
, pp.
49
55
.
27.
Yamamoto
,
K.
,
Müller
,
A.
,
Ashida
,
T.
,
Yonezawa
,
K.
,
Avellan
,
F.
, and
Tsujimoto
,
Y.
,
2015
, “
Experimental Method for the Evaluation of the Dynamic Transfer Matrix Using Pressure Transducers
,”
J. Hydraul. Res.
,
53
(
4
), pp.
466
477
.10.1080/00221686.2015.1050076
28.
Yamamoto
,
K.
,
Yonezawa
,
K.
,
Müller
,
A.
,
Avellan
,
F.
, and
Tsujimoto
,
Y.
,
2020
, “
Evaluation of a Dynamic Transfer Matrix for a Hydraulic Turbine
,”
ASME J. Fluids Eng.
,
142
(
4
), p.
1
.10.1115/1.4045437
29.
Zwart
,
P.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Model for Predicting Cavitation Dynamics
,”
Proceedings of the Fifth International Conference on Multiphase Flow
,
Yokohama, Japan
, May 30–June 3.
30.
Li
,
D.
,
Ren
,
Z.
,
Li
,
Y.
,
Gong
,
R.
, and
Wang
,
H.
,
2021
, “
Thermodynamic Effects on the Cavitation Flow of a Liquid Oxygen Turbopump
,”
Cryogenics
,
116
, p.
103302
.10.1016/j.cryogenics.2021.103302
31.
Roohi
,
E.
,
Pendar
,
M.-R.
, and
Rahimi
,
A.
,
2016
, “
Simulation of Three-Dimensional Cavitation Behind a Disk Using Various Turbulence and Mass Transfer Models
,”
Appl. Math. Modell.
,
40
(
1
), pp.
542
564
.10.1016/j.apm.2015.06.002
32.
Hosangadi
,
A.
,
Ahuja
,
V.
, and
Arunajatesan
,
S.
,
2001
, “
A Generalized Compressible Cavitation Model
,”
Proceedings of Fourth International Symposium on Cavitation (CAV2001)
, California Institute of Technology, Pasadena, CA, June
20
22
.
33.
Hosangadi
,
A.
,
Ahuja
,
V.
, and
Ungewitter
,
R. J.
,
2003
, “
Generalized Numerical Framework for Cavitation in Inducers
,”
ASME
Paper No. FEDSM2003-45408.10.1115/FEDSM2003-45408
34.
Kato
,
C.
,
2012
, “
Industry-University Collaborative Project on Numerical Predictions of Cavitating Flows in Hydraulic Machinery
,”
ASME
Paper No. AJK2011-06084.10.1115/AJK2011-06084
35.
Hori
,
S.
, and
Brennen
,
C.
,
2011
, “
Dynamic Response to Global Oscillation of Propulsion Systems With Cavitating Pumps
,”
J. Spacecr. Rockets
,
48
(
4
), pp.
599
608
.10.2514/1.51945
36.
Shimura
,
T.
,
1995
, “
Geometry Effects in the Dynamic Response of Cavitating LE-7 Liquid Oxygen Pump
,”
J. Propul. Power
,
11
(
2
), pp.
330
336
.10.2514/3.51429
37.
Brennen
,
C.
,
2013
, “
A Review of the Dynamics of Cavitating Pumps
,”
ASME J. Fluids Eng.
,
135
(
6
), p.
061301
.10.1115/1.4023663
38.
Rubin
,
S.
,
2004
, “
An Interpretation of Transfer Function Data for a Cavitating Pump
,”
AIAA
Paper No.
2004
4025
.10.2514/6.2004-4025
You do not currently have access to this content.