Abstract

In the actual operation of pumps, regulating the rotating speed of the pump based on the affinity law through variable speed drives is deemed as a prudent and convenient approach to mitigate energy loss. However, the multistage side channel pump is composed of one centrifugal impeller at the first stage and one or more side channel structures, the applicability of affinity law to this composite structure has not been confirmed. Three schemes with different suction angles of single-stage and one multistage side channel pump were investigated under different rotating speeds through numerical and experimental analysis. The findings elucidated that the single-stage side channel pumps exhibit a proportionate relationship to the affinity law, regardless of how the geometry varies. The numerical work was validated by the comparison between the simulated result and the tested result of the multistage side channel pump under two rotating speeds. Noticeably, the entire performance of the multistage side channel pump conforms to the affinity law, which has the same phenomenon as the single-stage side channel pump. The entropy production causing dissipation of turbulence flows in each stage exhibits a similar tendency as the overall head. As a result, the vortex distribution in average time and transient moment are almost analogous in the impeller of each stage under corresponding flow points. This briefly explains composite structures could be considered as pumps in series regardless of their composition. The outcome of this research could offer a theoretical basis for energy-saving methods of side channel pumps.

References

1.
Tolvanen
,
J.
,
2008
, “
Saving Energy With Variable Speed Drives
,”
World Pumps
,
2008
(
501
), pp.
32
33
.10.1016/S0262-1762(08)70164-0
2.
Appiah
,
D.
,
Zhang
,
F.
,
Yuan
,
S.
, and
Osman
,
M. K.
,
2018
, “
Effects of the Geometrical Conditions on the Performance of a Side Channel Pump: A Review
,”
Int. J. Energy Res.
,
42
(
2
), pp.
416
428
.10.1002/er.3803
3.
Shirinov
,
A.
, and
Oberbeck
,
S.
,
2011
, “
High Vacuum Side Channel Pump Working Against Atmosphere
,”
Vaccum
,
85
(
12
), pp.
1174
1177
.10.1016/j.vacuum.2010.12.018
4.
Shirinov
,
A.
, and
Oberbeck
,
S.
,
2011
,
Optimisation of the High Vacuum Side Channel Pump. Seventh International Conference on Compressors and Their Systems
, City University London, UK, pp.
81
92
.
5.
Fleder
,
A.
, and
Böhle
,
M.
,
2015
, “
A Systematical Study of the Influence of Blade Length, Blade Width, and Side Channel Height on the Performance of a Side Channel Pump
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121102
.10.1115/1.4030897
6.
Fleder
,
A.
, and
Böhle
,
M.
,
2019
, “
A Systematical Study of the Influence of Blade Number on the Performance of a Side Channel Pump
,”
ASME J. Fluids Eng.
,
141
(
11
), p.
111109
.10.1115/1.4043166
7.
Wang
,
Y.
,
Zhang
,
F.
,
Yuan
,
S.
,
Chen
,
K.
,
Wei
,
X.
, and
Appiah
,
D.
,
2020
, “
Effect of URANS and Hybrid RANS-Large Eddy Simulation Turbulence Models on Unsteady Turbulent Flows Inside a Side Channel Pump
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061503
.10.1115/1.4045995
8.
Zhang
,
F.
,
Fleder
,
A.
,
Böhle
,
M.
, and
Yuan
,
S.
,
2016
, “
Effect of Suction Side Blade Profile on the Performance of a Side Channel Pump
,”
Proc. Inst. Mech. Eng., Part A J. Power Energy
,
230
(
6
), pp.
586
597
.10.1177/0957650916649329
9.
Zhang
,
F.
,
Appiah
,
D.
,
Chen
,
K.
,
Yuan
,
S.
,
Adu-Poku
,
K. A.
, and
Wang
,
Y.
,
2020
, “
Dynamic Characterization of Vortex Structures and Their Evolution Mechanisms in a Side Channel Pump
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111502
.10.1115/1.4047808
10.
Chen
,
K.
,
Zhang
,
F.
,
Appiah
,
D.
,
Yuan
,
S.
,
Hong
,
F.
,
Zhu
,
L.
, and
Song
,
M.
,
2022
, “
Effect of Blade Tip Cutting Angle on Energy Conversion Mechanism of Side Channel Pumps
,”
Phys. Fluids
,
34
(
2
), p.
025107
.10.1063/5.0082671
11.
Bernd
,
S.
,
2015
,
Assessing the Energy Efficiency of Pumps and Pump Units
,
Elsevier
, Berlin, Gemany.
12.
Dhanasekaran
,
A.
, and
Kumaraswamy
,
S.
,
2020
, “
Experimental Evaluation of Affinity Law of Pumps by Using Multistage Electric Submersible Pump at Various Speeds of Operation
,”
AIP Conf. Proc.
,
2283
(
1
), p.
020106
.10.1063/5.0024932
13.
Nathan
,
B.
,
Darius
,
L.
, and
Mitch
,
F.
,
2022
, “
Submersible Multistage Centrifugal Pump for Versatile Test Reactor Cartridge Test Loop
,” Argonne National Laboratory, Argonne, IL, No.
ANL-VTR-90 175627
.10.2172/1868933
14.
Oshurbekov
,
S.
,
Kazakbaev
,
V.
,
Prakht
,
V.
,
Dmitrievskii
,
V.
, and
Gevorkov
,
L.
,
2020
, “
Energy Consumption Comparison of a Single Variable-Speed Pump and a System of Two Pumps: Variable-Speed and Fixed-Speed
,”
Appl. Sci.
,
10
(
24
), p.
8820
.10.3390/app10248820
15.
Simpson
,
A. R.
, and
Marchi
,
A.
,
2013
, “
Evaluating the Approximation of the Affinity Laws and Improving the Efficiency Estimate for Variable Speed Pumps
,”
J. Hydraul. Eng.
,
139
(
12
), pp.
1314
1317
.10.1061/(ASCE)HY.1943-7900.0000776
16.
Gan
,
X.
,
Pei
,
J.
,
Pavesi
,
G.
,
Yuan
,
S.
, and
Wang
,
W.
,
2022
, “
Application of Intelligent Methods in Energy Efficiency Enhancement of Pump System: A Review
,”
Energy Rep.
,
8
, pp.
11592
11606
.10.1016/j.egyr.2022.09.016
17.
Mosshammer
,
M.
,
Benigni
,
H.
,
Jaberg
,
H.
, and
Konrad
,
J.
,
2019
, “
Maximum Efficiency Despite Lowest Specific Speed—Simulation and Optimisation of a Side Channel Pump
,”
Int. J. Turbomach. Propul. Power
,
4
(
2
), p.
6
.10.3390/ijtpp4020006
18.
Liu
,
R.
,
Zhang
,
F.
,
Chen
,
K.
,
Wang
,
Y.
,
Yuan
,
S.
, and
Xu
,
R.
,
2022
, “
Effects of a Detached Eddy Simulation-Curvature Correction (DES-CC) Turbulence Model on the Unsteady Flows of Side Channel Pumps
,”
Processes
,
10
(
8
), p.
1630
.10.3390/pr10081630
19.
Menter
,
F.
,
1993
, “
Zonal Two Equation k-w Turbulence Models for Aerodynamic Flows
,”
AIAA
Paper No. 93-2906.10.2514/6.1993-2906
20.
Spalart
,
P. R.
,
1999
, “
Strategies for Turbulence Modelling and Simulations (Engineering Turbulence Modelling and Experiments)
,”
Proceedings of the 4th International Symposium on Engineering Turbulence Modelling and Measurements
; Ajaccio, Corsica, France, pp. 3–17.10.1016/B978-008043328-8/50001-1
21.
Cheng
,
H. Y.
,
Bai
,
X. R.
,
Long
,
X. P.
,
Ji
,
B.
,
Peng
,
X. X.
, and
Farhat
,
M.
,
2020
, “
Large Eddy Simulation of the Tip-Leakage Cavitating Flow With an Insight on How Cavitation Influences Vorticity and Turbulence
,”
Appl. Math. Modell.
,
77
, pp.
788
809
. 10.1016/j.apm.2019.08.005
22.
Zhang
,
F.
,
2017
,
Study on Optimization Design and Two-Phase Flow of a Side Channel Pump
,
Shaker Verlag
, Düren, Germany.
23.
Choi
,
W. C.
,
Yoo
,
I. S.
,
Park
,
M. R.
, and
Chung
,
M. K.
,
2013
, “
Experimental Study on the Effect of Blade Angle on Regenerative Pump Performance
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
227
(
5
), pp.
585
592
.10.1177/0957650913487731
24.
Gu
,
Y.
,
Pei
,
J.
,
Yuan
,
S.
,
Wang
,
W.
,
Zhang
,
F.
,
Wang
,
P.
,
Appiah
,
D.
, and
Liu
,
Y.
,
2019
, “
Clocking Effect of Vaned Diffuser on Hydraulic Performance of High-Power Pump by Using the Numerical Flow Loss Visualization Method
,”
Energy
,
170
, pp.
986
997
.10.1016/j.energy.2018.12.204
25.
Spence
,
R.
, and
Amaral-Teixeira
,
J.
,
2009
, “
A CFD Parametric Study of Geometrical Variations on the Pressure Pulsations and Performance Characteristics of a Centrifugal Pump
,”
Comput. Fluids
,
38
(
6
), pp.
1243
1257
.10.1016/j.compfluid.2008.11.013
26.
Wang
,
M.
,
Li
,
Y.
,
Yuan
,
J.
, and
Yuan
,
S.
,
2022
, “
Effects of Different Vortex Designs on Optimization Results of Mixed-Flow Pump
,”
Eng. Appl. Comput. Fluid Mech.
,
16
(
1
), pp.
36
57
.10.1080/19942060.2021.2006091
27.
Zhao
,
J.
,
Pei
,
J.
,
Yuan
,
J.
, and
Wang
,
W.
,
2022
, “
Energy-Saving Oriented Optimization Design of the Impeller and Volute of a Multi-Stage Double-Suction Centrifugal Pump Using Artificial Neural Network
,”
Eng. Appl. Comput. Fluid Mech.
,
16
(
1
), pp.
1974
2001
.10.1080/19942060.2022.2127913
28.
Li
,
W.
,
Huang
,
Y.
,
Ji
,
L.
,
Ma
,
L.
,
Agarwal
,
R. K.
, and
Awais
,
M.
,
2023
, “
Prediction Model for Energy Conversion Characteristics During Transient Processes in a Mixed-Flow Pump
,”
Energy
,
271
, p.
127082
.10.1016/j.energy.2023.127082
29.
Li
,
W.
,
Ji
,
L.
,
Li
,
E.
,
Shi
,
W.
,
Agarwal
,
R.
, and
Zhou
,
L.
,
2021
, “
Numerical Investigation of Energy Loss Mechanism of Mixed-Flow Pump Under Stall Condition
,”
Renewable Energy
,
167
, pp.
740
760
.10.1016/j.renene.2020.11.146
30.
Herwig
,
H.
, and
Schmandt
,
B.
,
2014
, “
How to Determine Losses in a Flow Field: A Paradigm Shift Towards the Second Law Analysis
,”
Entropy
,
16
(
6
), pp.
2959
2989
.10.3390/e16062959
31.
Kock
,
F.
, and
Herwig
,
H.
,
2004
, “
Local Entropy Production in Turbulent Shear Flows: A high-Reynolds Number Model With Wall Functions
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2205
2215
.10.1016/j.ijheatmasstransfer.2003.11.025
32.
Kock
,
F.
, and
Herwig
,
H.
,
2005
, “
Entropy Production Calculation for Turbulent Shear Flows and Their Implementation in CFD Codes
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
672
680
.10.1016/j.ijheatfluidflow.2005.03.005
33.
Yu
,
Y.
,
Shrestha
,
P.
,
Alvarez
,
O.
,
Nottage
,
C.
, and
Liu
,
C.
,
2021
, “
Investigation of Correlation Between Vorticity, Q, Λci, λ2, Δ and Liutex
,”
Comput. Fluids
,
225
, p.
104977
.10.1016/j.compfluid.2021.104977
34.
Zhang
,
N.
,
Jiang
,
J.
,
Gao
,
B.
,
Liu
,
X.
, and
Ni
,
D.
,
2020
, “
Numerical Analysis of the Vortical Structure and Its Unsteady Evolution of a Centrifugal Pump
,”
Renewable Energy
,
155
, pp.
748
760
.10.1016/j.renene.2020.03.182
You do not currently have access to this content.