Abstract

Poland belongs to the most meaningful producers of fresh food products in the European Union, e.g., apples, cherries, carrots, as well as currants. A significant part of these products are subjected to further processing, which results in the generation of an abundant amount of wet residues, such as pomace. The present paper aims to investigate the possibility of co-processing various industrial residues in the form of fruit pomaces through thermochemical liquefaction toward high-energy-density biocrude and biochar. More specifically, industrial wastes received from commercial juice production, i.e., blackcurrant, apple, and cherry pomaces, were converted under subcritical conditions of the water-isopropyl alcohol solvent system at fixed conditions. Particular focus was put on testing binary and ternary mixture feedstock systems and the possibility of predicting the bioproduct yield. Furthermore, the quality of the resultant biocrudes was analyzed by means of FTIR, GC-MS, and elemental analysis. For all separately studied raw materials and their binary and ternary mixtures, the dominant group fraction was biocrude with its yield ranging between 45.8 and 54.5 wt%. Produced liquids exhibit high energy density (HHV between 30.1 and 32.4 MJ/kg); thus, all of them pose perspective alternative fuels for generating heat and electricity. Also, the solid biochars presented a high energy density (HHV around 24–26 MJ/kg) and can be considered as an alternative energy carrier. The postulated approach aims to increase the flexibility and profitability of future technology of processing useless waste toward value-added bioproducts for the chemical and energy sectors.

References

1.
International Energy Agency
,
2023
, “
Poland—Key Energy Statistics
,” https://www.iea.org/countries/poland.
2.
Davies
,
A.
,
Soheilian
,
R.
,
Zhuo
,
C.
, and
Levendis
,
Y. A.
,
2014
, “
Pyrolytic Conversion of Biomass Residues to Gaseous Fuels for Electricity Generation
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021101
.
3.
Corma Canos
,
A.
,
Iborra
,
S.
, and
Velty
,
A.
,
2007
, “
Chemical Routes for the Transformation of Biomass Into Chemicals
,”
Chem. Rev.
,
107
(
6
), pp.
2411
2502
.
4.
Isikgor
,
F. H.
, and
Becer
,
C. R.
,
2015
, “
Lignocellulosic Biomass: A Sustainable Platform for the Production of Bio-Based Chemicals and Polymers
,”
Polym. Chem.
,
6
(
25
), pp.
4497
4559
.
5.
Ragauskas
,
A. J.
,
Williams
,
C. K.
,
Davison
,
B. H.
,
Britovsek
,
G.
,
Cairney
,
J.
,
Eckert
,
C. A.
,
Frederick
,
W. J.
, et al
,
2018
, “
The Path Forward for Biofuels and Biomaterials
,”
Science
,
311
(
5760
), pp.
484
489
.
6.
Parker
,
H. W.
,
1981
, “
Engine Fuels From Biomass
,”
ASME J. Energy Resour. Technol.
,
103
(
12
), pp.
344
351
.
7.
Huber
,
G. W.
,
Iborra
,
S.
, and
Corma
,
A.
,
2006
, “
Synthesis of Transportation Fuels From Biomass: Chemistry, Catalysts, and Engineering
,”
Chem. Rev.
,
106
(
9
), pp.
4044
4098
.
8.
Fruit Logistica
,
2021
,
European Statistics Handbook
,
Messe Berlin GmbH, Berlin, Germany
.
9.
Gustavsson
,
J.
,
Cederberg
,
Ch.
,
Sonesson
,
U.
,
van Otterdijk
,
R.
, and
Meybeck
,
A.
,
2011
,
Global Food Losses and Food waste—Extent, Causes and Prevention
,
Food and Agriculture Organization of the United Nations
,
Rome, Italy
.
10.
Mohanty
,
A.
,
Mankoti
,
M.
,
Rout
,
P. R.
,
Meena
,
S. S.
,
Dewan
,
S.
,
Kalia
,
B.
,
Varjani
,
S.
,
Wong
,
J. W. C.
, and
Banu
,
J. R.
,
2022
, “
Sustainable Utilization of Food Waste for Bioenergy Production: A Step Towards Circular Bioeconomy
,”
Int. J. Food Microbiol.
,
365
(
Dec.
), p.
109538
.
11.
Guo
,
M.
,
Song
,
W.
, and
Buhain
,
J.
,
2015
, “
Bioenergy and Biofuels: History, Status, and Perspective
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
712
725
.
12.
Selim
,
O. M.
,
Hussein
,
M. S.
, and
Amano
,
R. S.
,
2020
, “
Effect of Heating Rate on Chemical Kinetics of Chicken Manure With Different Gas Agents
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102104
.
13.
Li
,
J.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Liu
,
X.
, and
Gupta
,
A. K.
,
2022
, “
Acid and Alkali Pretreatment Effects on CO2-Assisted Gasification of Pinewood
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
022306
.
14.
Varma
,
A. K.
, and
Mondal
,
P.
,
2016
, “
Physicochemical Characterization and Pyrolysis Kinetic Study of Sugarcane Bagasse Using Thermogravimetric Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
9
), p.
052205
.
15.
Dinc
,
G.
,
Isik
,
F.
, and
Yel
,
E.
,
2020
, “
Effects of Pyrolysis Conditions on Organic Fractions and Heat Values of Olive Mill Wastes Pyrolysis Liquid
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102107
.
16.
Espindola
,
J.
,
Selim
,
O. M.
, and
Amano
,
R. S.
,
2021
, “
Co-Pyrolysis of Rice Husk and Chicken Manure
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022101
.
17.
Selim
,
O. M.
, and
Amano
,
R. S.
,
2021
, “
Co-Pyrolysis of Chicken and Cow Manure
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
011301
.
18.
Wang
,
Z.
,
Li
,
J.
,
Burra
,
K. G.
,
Liu
,
X.
,
Li
,
X.
,
Zhang
,
M.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2021
, “
Synergetic Effect on CO2-Assisted Co-Gasification of Biomass and Plastics
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031901
.
19.
Peterson
,
A. A.
,
Vogel
,
F.
,
Lachance
,
R. P.
,
Fröling
,
M.
,
Antal
,
M. J.
, and
Tester
,
J. W.
,
2008
, “
Thermochemical Biofuel Production in Hydrothermal Media: A Review of Sub- and Supercritical Water Technologies
,”
Energy Environ. Sci.
,
1
(
1
), pp.
32
65
.
20.
Wądrzyk
,
M.
,
Janus
,
R.
, and
Jakóbiec
,
J.
,
2017
, “
Upłynnianie Odpadowej Materii Organicznej Do Biooleju w Wodzie w Warunkach Podkrytycznych
,”
Przem. Chem.
,
96
(
9
), pp.
1913
1918
.
21.
Dimitriadis
,
A.
, and
Bezergianni
,
S.
,
2017
, “
Hydrothermal Liquefaction of Various Biomass and Waste Feedstocks for Biocrude Production: A State of the Art Review
,”
Renewable Sustainable Energy Rev.
,
68
(
1
), pp.
113
125
.
22.
Ji
,
C.
,
He
,
Z.
,
Wang
,
Q.
,
Xu
,
G.
,
Wang
,
S.
,
Xu
,
Z.
, and
Ji
,
H.
,
2017
, “
Effect of Operating Conditions on Direct Liquefaction of Low-Lipid Microalgae in Ethanol-Water Co-Solvent for Bio-Oil Production
,”
Energy Convers. Manage.
,
141
, pp.
155
162
.
23.
Feng
,
S.
,
Wei
,
R.
,
Leitch
,
M.
, and
Xu
,
C. C.
,
2018
, “
Comparative Study on Lignocellulose Liquefaction in Water, Ethanol, and Water/Ethanol Mixture: Roles of Ethanol and Water
,”
Energy
,
155
, pp.
234
241
.
24.
He
,
Y.
,
Liang
,
X.
,
Jazrawi
,
C.
,
Montoya
,
A.
,
Yuen
,
A.
,
Cole
,
A. J.
,
Neveux
,
N.
, et al,
2016
, “
Continuous Hydrothermal Liquefaction of Macroalgae in the Presence of Organic Co-Solvents
,”
Algal Res.
,
17
, pp.
185
195
.
25.
Wądrzyk
,
M.
,
Janus
,
R.
,
Vos
,
M. P.
, and
Brilman
,
D. W. F.
,
2018
, “
Effect of Process Conditions on Bio-Oil Obtained Through Continuous Hydrothermal Liquefaction of Scenedesmus Sp. Microalgae
,”
J. Anal. Appl. Pyrolysis
,
134
, pp.
415
426
.
26.
Wądrzyk
,
M.
,
Grzywacz
,
P.
,
Janus
,
R.
, and
Michalik
,
M.
,
2021
, “
A Two-Stage Processing of Cherry Pomace via Hydrothermal Treatment Followed by Biochar Gasification
,”
Renewable Energy
,
179
, pp.
248
261
.
27.
Wądrzyk
,
M.
,
Berdel
,
M.
,
Janus
,
R.
, and
Brilman
,
D. W. F.
,
2019
, “
Hydrothermal Processing of Pine Wood: Effect of Process Variables on Bio-Oil Quality and Yield
,”
E3S Web Conf.
,
108
, pp.
1
11
.
28.
Brilman
,
D. W. F.
,
Drabik
,
N.
, and
Wądrzyk
,
M.
,
2017
, “
Hydrothermal Co-Liquefaction of Microalgae, Wood, and Sugar Beet Pulp
,”
Biomass Convers. Biorefinery
,
7
(
4
), pp.
445
454
.
29.
Huang
,
H.-J.
,
Chang
,
Y.-C.
,
Lai
,
F.-Y.
,
Zhou
,
C.-F.
,
Pan
,
Z.-Q.
,
Xiao
,
X.-F.
,
Wang
,
J.-X.
, and
Zhou
,
C.-H.
,
2019
, “
Co-Liquefaction of Sewage Sludge and Rice Straw/Wood Sawdust: The Effect of Process Parameters on the Yields/Properties of Bio-Oil and Biochar Products
,”
Energy
,
173
, pp.
140
150
.
30.
Xu
,
D.
,
Wang
,
Y.
,
Lin
,
G.
,
Guo
,
S.
,
Wang
,
S.
, and
Wu
,
Z.
,
2019
, “
Co-Hydrothermal Liquefaction of Microalgae and Sewage Sludge in Subcritical Water: Ash Effects on Bio-Oil Production
,”
Renewable Energy
,
138
, pp.
1143
1151
.
31.
Yuan
,
C.
,
Wang
,
S.
,
Cao
,
B.
,
Hu
,
Y.
,
Abomohra
,
A. E. F.
,
Wang
,
Q.
,
Qian
,
L.
, et al
,
2019
, “
Optimization of Hydrothermal Co-Liquefaction of Seaweeds With Lignocellulosic Biomass: Merging 2nd and 3rd Generation Feedstocks for Enhanced Bio-Oil Production
,”
Energy
,
173
pp.
413
422
.
32.
Wądrzyk
,
M.
,
Korzeniowski
,
Ł
,
Plata
,
M.
,
Janus
,
R.
,
Lewandowski
,
M.
,
Borówka
,
G.
, and
Maziarka
,
P.
,
2023
, “
Solvothermal Liquefaction of Blackcurrant Pomace in the Water-Monohydroxy Alcohol Solvent System
,”
Energies
,
16
(
3
), p.
1127
.
33.
Al-Gharibeh
,
E.
,
Leathers
,
R.
,
Kumar
,
K.
, and
Sung
,
C. J.
,
2020
, “
Ignition and Combustion Characteristics of Decanoic Acid Derived Alkyl Esters in a Fuel Ignition Tester
,”
Fuel
,
276
, p.
117982
.
You do not currently have access to this content.