Abstract

In order to develop reservoirs rationally, accurate reservoir parameters are usually obtained through well test analysis. However, a good deal of well test data with changing wellbore storage characteristics bring difficulties to the current well test interpretation, so it is important to find a valid interpretation method for changing well storage reserves data. This paper proposed an automatic well test interpretation method based on one-dimensional convolutional neural network (1D CNN) for circular reservoir with changing wellbore storage. Compared with two-dimensional convolutional neural network (2D CNN), 1D CNN significantly reduces the computational complexity and time cost. The CNN takes pressure change and pressure derivative data of the log–log plot as input and reservoir parameters as output of network. This method applies two 1D CNNs respectively to fit two types of reservoir parameters, one type includes CDe2s, CαD, and CϕD and the other type is boundary distance R. In addition, the training samples of the two networks are different according to different parameters. The two-network approach reduces the difficulty of extracting curve characteristics and improves interpretation ability. The effectiveness of this method is proved by the field data in Daqing oilfield. The method greatly improves the working efficiency of well test interpreters and can be widely used.

References

1.
Xie
,
J.
,
Luo
,
P.
,
Yang
,
Y.
,
Chai
,
X.
,
Yang
,
H.
,
Chen
,
F.
, and
Zhang
,
K.
,
2020
, “
Study on Identification of Pressure Transient Characteristics and Well Test Interpretation of Dongping Bedrock Gas Reservoir
,”
Unconv. Oil Gas
,
7
(
3
), pp.
90
95
. CNKI:SUN:FCYQ.0.2020-03-014
2.
Liu
,
J.
,
Liu
,
Z.
,
Liu
,
Q.
, and
Zuo
,
H.
,
2020
, “
The Multilayer Fractured Wells Productivity Evaluation Based on Numerical Well Test in Shenmu Gas Reservoir
,”
Unconv. Oil Gas
,
7
(
5
), pp.
75
82
. CNKI:SUN:FCYQ.0.2020-05-010
3.
Zha
,
W.
,
Gao
,
S.
,
Li
,
D.
, and
Chen
,
K.
,
2018
, “
Application of the Ensemble Kalman Filter for Assisted Layered History Matching
,”
Adv. Geo-Energy Res.
,
2
(
4
), pp.
450
456
.
4.
Spivey
,
J. P.
, and
Lee
,
W. J.
,
1999
, “
Variable Wellbore Storage Models for a Dual-Volume Wellbore
,”
Paper Presented at the SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Oct. 3–6
.
5.
Chen
,
Y.
, and
Zhao
,
H.
,
2017
, “
Well Testing Analysis and Research on Variable Wellbore Storage in Low Permeability Gas Reservoir
,”
Well Testing
,
26
(
3
), pp.
33–35 and 38
. CNKI:SUN:YQJC.0.2017-03-009
6.
Agarwal
,
R. G.
,
A1-Hussainy
,
R.
, and
Ramey
,
H. J.
,
1970
, “
An Investigation of Wellbore Storage and Skin Effect in Unsteady Liquid Flow: I. Analytical Treatment
,”
Pet. Eng. J.
,
10
(
3
), pp.
279
290
.
7.
Fair
,
W. B.
,
1981
, “
Pressure Buildup Analysis With Wellbore Phase Redistribution
,”
Soc. Pet. Eng. J.
,
21
(
2
), pp.
259
270
.
8.
Hegeman
,
P. S.
,
Hallford
,
D. L.
, and
Joseph
,
J. A.
,
1993
, “
Well Test Analysis With Changing Wellbore Storage
,”
SPE Formation Eval.
,
8
(
3
), pp.
201
207
.
9.
Ali
,
A.
,
Falcone
,
G.
,
Hewitt
,
G. F.
,
Bozorgzadeh
,
M.
, and
Gringarten
,
A. C.
,
2005
, “
Experimental Investigation of Wellbore Phase Redistribution Effects on Pressure-Transient Data
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Oct. 9–12
, Society of Petroleum Engineers.
10.
Li
,
Y.
,
Li
,
X.
,
Teng
,
S.
,
Wang
,
F.
, and
Xu
,
D.
,
2014
, “
A New Changing Wellbore Storage Model for Pressure Oscillation in Pressure Buildup Test
,”
J. Nat. Gas Sci. Eng.
,
19
, pp.
350
357
.
11.
Ashena
,
R.
,
Rabiei
,
M.
,
Rasouli
,
V.
,
Mohammadi
,
A. H.
, and
Mishani
,
S.
,
2021
, “
Drilling Parameters Optimization Using an Innovative Artificial Intelligence Model
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052110
.
12.
Dhaif
,
R. A.
,
Ibrahim
,
A. F
, and
Elkatatny
,
S.
,
2022
, “
Prediction of Surface Oil Rates for Volatile Oil and Gas Condensate Reservoirs Using Artificial Intelligence Techniques
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
033001
.
13.
Alizadeh
,
S. M.
,
Khodabakhshi
,
A.
,
Abaei Hassani
,
P.
, and
Vaferi
,
B.
,
2021
, “
Smart Identification of Petroleum Reservoir Well Testing Models Using Deep Convolutional Neural Networks (GoogleNet)
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
073008
.
14.
Chen
,
Z.
, and
Yang
,
D. T.
,
2021
, “
Predicting Viscosities of Heavy Oils and Solvent–Heavy Oil Mixtures Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
113001
.
15.
Athichanagorn
,
S.
, and
Horne
,
R. N.
,
1995
, “
Automatic Parameter Estimation From Well Test Data Using Artificial Neural Network
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
, Paper SPE 30556.
16.
Deng
,
Y.
,
Wang
,
J.
, and
Chen
,
Q.
,
2000
, “
The Artificial Neural Network Method of Well Test Interpretation Model Identification and Parameter Estimation
,”
Paper Presented at the SPE International Oil and Gas Conference and Exhibition
,
China
,
Nov. 7–10
, SPE 64652.
17.
Jeirani
,
Z.
, and
Mohebbi
,
A.
,
2006
, “
Estimating the Initial Pressure, Permeability and Skin Factor of Oil Reservoirs Using Artificial Neural Networks
,”
J. Pet. Sci. Eng.
,
50
(
1
), pp.
11
20
.
18.
Adibifard
,
M.
,
Tabatabaei-Nejad
,
S. A. R.
, and
Khodapanah
,
E.
,
2014
, “
Artificial Neural Network (ANN) to Estimate Reservoir Parameters in Naturally Fractured Reservoirs Using Well Test Data
,”
J. Pet. Sci. Eng.
,
122
, pp.
585
594
.
19.
Abdel-Hamid
,
O.
,
Mohamed
,
A.
, and
Jiang
,
H.
,
2014
, “
Convolutional Neural Networks for Speech Recognition
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
,
22
(
10
), pp.
1533
1545
.
20.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G.
,
2012
, “
Imagenet Classification With Deep Convolutional Neural Networks
,”
Proceedings of 25th International Conference on Neural Information Processing Systems
,
Lake Tahoe, NV
,
Dec. 3–6
.
21.
Szegedy
,
C.
,
Liu
,
W.
,
Jia
,
Y.
,
Sermanet
,
P.
,
Reed
,
S.
,
Anguelov
,
D.
,
Erhan
,
D.
,
Vanhoucke
,
V.
, and
Rabinovich
,
A.
,
2015
, “
Going Deeper With Convolutions
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
,
June 7–12
.
22.
Yun
,
W.
,
Liu
,
Y.
, and
Kovscek
,
A.R.
,
2020
, “
Deep Learning for Automated Characterization of Pore-Scale Wettability
,”
Adv. Water Res.
,
144
, p.
103728
.
23.
Alqahtani
,
N.
,
Armstrong
,
R. T.
, and
Mostaghimi
,
P.
,
2018
, “
Deep Learning Convolutional Neural Networks to Predict Porous Media Properties
,”
SPE Asia Pacific Oil and Gas Conference and Exhibition
,
Brisbane, Australia
,
Oct. 23–25
.
24.
Zha
,
W.
,
Li
,
X.
,
Xing
,
Y.
,
He
,
L.
, and
Li
,
D.
,
2020
, “
Reconstruction of Shale Image Based on Wasserstein Generative Adversarial Networks With Gradient Penalty
,”
Adv. Geo-Energy Res.
,
4
(
1
), pp.
107
114
.
25.
Daolun
,
L. I.
,
Xuliang
,
L. I. U.
,
Wenshu
,
Z. H. A.
,
Jinghai
,
Y. A. N. G.
, and
Detang
,
L. U.
,
2020
, “
Automatic Well Test Interpretation Based on Convolutional Neural Network for a Radial Composite Reservoir
,”
Pet. Explor. Dev.
,
47
(
3
), pp.
623
631
.
26.
Liu
,
X.
,
Li
,
D.
,
Yang
,
J.
,
Zha
,
W.
,
Zhou
,
Z.
,
Gao
,
L.
, and
Han
,
J.
,
2020
, “
Automatic Well Test Interpretation Based on Convolutional Neural Network for Infinite Reservoir
,”
J. Pet. Sci. Eng.
,
195
, p.
107618
.
27.
Liu
,
X.
,
Zha
,
W.
,
Qi
,
Z.
,
Li
,
D.
,
Xing
,
Y.
, and
He
,
L.
,
2022
, “
Automatic Reservoir Model Identification Method Based on Convolutional Neural Network
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
043002
.
28.
Kiranyaz
,
S.
,
Ince
,
T.
,
Hamila
,
R.
, and
Gabbouj
,
M.
,
2015
, “
Convolutional Neural Networks for Patient-Specific ECG Classification
,”
37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
Milan, Italy
,
Aug. 25–29
, IEEE, pp.
2608
2611
.
29.
Kiranyaz
,
S.
,
Ince
,
T.
, and
Gabbouj
,
M.
,
2016
, “
Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks
,”
IEEE Trans. Biomed. Eng.
,
63
(
3
), pp.
664
675
.
30.
Daniel
,
G.
, and
Matthew
,
C.
,
2017
, “
One-Dimensional Convolutional Neural Network Land-Cover Classification of Multi-Seasonal Hyperspectral Imagery in the San Francisco Bay Area, California
,”
Remote Sens.
,
9
(
6
), p.
629
.
31.
Levent
,
E.
,
2017
, “
Bearing Fault Detection by One-Dimensional Convolutional Neural Networks
,”
Math. Probl. Eng.
,
2017
, pp.
1
9
.
32.
Kim
,
Y.
,
2014
, “
Convolutional Neural Networks for Sentence Classification
,”
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)
,
Stroudsburg, PA
,
Oct. 25–29
, pp.
1746
1751
.
33.
Abdel-Hamid
,
O.
,
Mohamed
,
A.
,
Jiang
,
H.
, and
Penn
,
G.
,
2012
, “
Applying Convolutional Neural Networks Concepts to Hybrid NN-HMM Model for Speech Recognition
,”
2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
Kyoto, Japan
,
Mar. 25–30
, IEEE, pp.
4277
4280
.
34.
Deng
,
Y.
,
Wang
,
J.
, and
Chen
,
Q.
,
2000
, “
The Artificial Neural Network Method of Well Test Interpretation Model Identification and Parameter Estimation
,”
Paper Presented at the SPE International Oil and Gas Conference and Exhibition
,
China
,
Nov. 7–10
, SPE 64652.
You do not currently have access to this content.