Abstract

This paper aims to develop a distributed layered control framework for the navigation, planning, and control of multi-agent quadrupedal robots subject to environments with uncertain obstacles and various disturbances. At the highest layer of the proposed layered control, a reference path for all agents is calculated, considering artificial potential fields (APF) under a priori known obstacles. Second, in the middle layer, we employ a distributed nonlinear model predictive control (NMPC) scheme with a one-step delay communication protocol (OSDCP) subject to reduced-order and linear inverted pendulum (LIP) models of agents to ensure the feasibility of the gaits and collision avoidance, addressing the degree of uncertainty in real-time. Finally, low-level nonlinear whole-body controllers (WBCs) impose the full-order locomotion models of agents to track the optimal and reduced-order trajectories. The proposed controller is validated for effectiveness and robustness on up to four A1 quadrupedal robots in simulations and two robots in the experiments.1 Simulations and experimental validations demonstrate that the proposed approach can effectively address the real-time planning and control problem. In particular, multiple A1 robots are shown to navigate various environments, maintaining collision-free distances while being subject to unknown external disturbances such as pushes and rough terrain.

References

1.
Tuci
,
E.
,
Alkilabi
,
M. H. M.
, and
Akanyeti
,
O.
,
2018
, “
Cooperative Object Transport in Multi-Robot Systems: A Review of the State-of-the-Art
,”
Front. Rob. AI
,
5
, p.
59
.10.3389/frobt.2018.00059
2.
Yan
,
Z.
,
Jouandeau
,
N.
, and
Cherif
,
A. A.
,
2013
, “
A Survey and Analysis of Multi-Robot Coordination
,”
Int. J. Adv. Rob. Syst.
,
10
(
12
), p.
399
.10.5772/57313
3.
Romeh
,
A. E.
, and
Mirjalili
,
S.
,
2023
, “
Multi-Robot Exploration of Unknown Space Using Combined Meta-Heuristic Salp Swarm Algorithm and Deterministic Coordinated Multi-Robot Exploration
,”
Sensors
,
23
(
4
), p.
2156
.10.3390/s23042156
4.
Marjovi
,
A.
,
Nunes
,
J. G.
,
Marques
,
L.
, and
de Almeida
,
A.
,
2009
, “
Multi-Robot Exploration and Fire Searching
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, St. Louis, MO, Oct. 10–15, pp.
1929
1934
.10.1109/IROS.2009.5354598
5.
Drew
,
D. S.
,
2021
, “
Multi-Agent Systems for Search and Rescue Applications
,”
Curr. Rob. Rep.
,
2
(
2
), pp.
189
200
.10.1007/s43154-021-00048-3
6.
Shamsoshoara
,
A.
,
Afghah
,
F.
,
Razi
,
A.
,
Mousavi
,
S.
,
Ashdown
,
J.
, and
Turk
,
K.
,
2020
, “
An Autonomous Spectrum Management Scheme for Unmanned Aerial Vehicle Networks in Disaster Relief Operations
,”
IEEE Access
,
8
, pp.
58064
58079
.10.1109/ACCESS.2020.2982932
7.
Kim
,
S.
,
Seo
,
H.
,
Shin
,
J.
, and
Kim
,
H. J.
,
2018
, “
Cooperative Aerial Manipulation Using Multirotors With multi-DOF Robotic Arms
,”
IEEE/ASME Trans. Mechatron.
,
23
(
2
), pp.
702
713
.10.1109/TMECH.2018.2792318
8.
Boeing
,
A.
,
Pangeni
,
S.
,
Bräunl
,
T.
, and
Lee
,
C. S.
,
2012
, “
Real-Time Tactical Motion Planning and Obstacle Avoidance for Multi-Robot Cooperative Reconnaissance
,” IEEE International Conference on Systems, Man, and Cybernetics (
SMC
), Seoul, Korea (South), Oct. 14–17, pp.
3117
3122
.10.1109/ICSMC.2012.6378270
9.
Radmanesh
,
M.
,
Kumar
,
M.
,
Guentert
,
P. H.
, and
Sarim
,
M.
,
2018
, “
Overview of Path-Planning and Obstacle Avoidance Algorithms for UAVs: A Comparative Study
,”
Unmanned Syst.
,
06
(
2
), pp.
95
118
.10.1142/S2301385018400022
10.
Westervelt
,
E.
,
Grizzle
,
J.
,
Chevallereau
,
C.
,
Choi
,
J.
, and
Morris
,
B.
,
2007
,
Feedback Control of Dynamic Bipedal Robot Locomotion
,
Taylor & Francis/CRC
, Boca Raton, FL.
11.
Hurmuzlu
,
Y.
, and
Marghitu
,
D. B.
,
1994
, “
Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points
,”
Int. J. Rob. Res.
,
13
(
1
), pp.
82
92
.10.1177/027836499401300106
12.
Johnson
,
A. M.
,
Burden
,
S. A.
, and
Koditschek
,
D. E.
,
2016
, “
A Hybrid Systems Model for Simple Manipulation and Self-Manipulation Systems
,”
Int. J. Rob. Res.
,
35
(
11
), pp.
1354
1392
.10.1177/0278364916639380
13.
Ames
,
A. D.
,
Gregg
,
R. D.
,
Wendel
,
E. D. B.
, and
Sastry
,
S.
,
2007
, “
On the Geometric Reduction of Controlled Three-Dimensional Bipedal Robotic Walkers
,”
Lagrangian and Hamiltonian Methods for Nonlinear Control 2006
,
Springer
,
Berlin, Heidelberg
, pp.
183
196
.
14.
Gregg
,
R. D.
, and
Spong
,
M. W.
,
2010
, “
Reduction-Based Control of Three-Dimensional Bipedal Walking Robots
,”
Int. J. Rob. Res.
,
29
(
6
), pp.
680
702
.10.1177/0278364909104296
15.
Spong
,
M.
, and
Bullo
,
F.
,
2005
, “
Controlled Symmetries and Passive Walking
,”
IEEE Trans. Autom. Control
,
50
(
7
), pp.
1025
1031
.10.1109/TAC.2005.851449
16.
Manchester
,
I.
,
Mettin
,
U.
,
Iida
,
F.
, and
Tedrake
,
R.
,
2011
, “
Stable Dynamic Walking Over Uneven Terrain
,”
Int. J. Rob. Res.
,
30
(
3
), pp.
265
279
.10.1177/0278364910395339
17.
Shiriaev
,
A.
,
Freidovich
,
L.
, and
Gusev
,
S.
,
2010
, “
Transverse Linearization for Controlled Mechanical Systems With Several Passive Degrees of Freedom
,”
IEEE Trans. Autom. Control
,
55
(
4
), pp.
893
906
.10.1109/TAC.2010.2042000
18.
Westervelt
,
E.
,
Grizzle
,
J.
, and
Koditschek
,
D.
,
2003
, “
Hybrid Zero Dynamics of Planar Biped Walkers
,”
IEEE Trans. Autom. Control
,
48
(
1
), pp.
42
56
.10.1109/TAC.2002.806653
19.
Ames
,
A.
,
Galloway
,
K.
,
Sreenath
,
K.
, and
Grizzle
,
J.
,
2014
, “
Rapidly Exponentially Stabilizing Control Lyapunov Functions and Hybrid Zero Dynamics
,”
IEEE Trans. Autom. Control
,
59
(
4
), pp.
876
891
.10.1109/TAC.2014.2299335
20.
Isidori
,
A.
,
1995
,
Nonlinear Control Systems
, 3rd ed.,
Springer
, London, UK.
21.
Posa
,
M.
,
Kuindersma
,
S.
, and
Tedrake
,
R.
,
2016
, “
Optimization and Stabilization of Trajectories for Constrained Dynamical Systems
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
1366
1373
.10.1109/ICRA.2016.7487270
22.
Hereid
,
A.
,
Cousineau
,
E. A.
,
Hubicki
,
C. M.
, and
Ames
,
A. D.
,
2016
, “
3D Dynamic Walking With Underactuated Humanoid Robots: A Direct Collocation Framework for Optimizing Hybrid Zero Dynamics
,” IEEE International Conference on Robotics and Automation (
ICRA
), Stockholm, Sweden, May 16–21, pp.
1447
1454
.10.1109/ICRA.2016.7487279
23.
Full
,
R.
, and
Koditschek
,
D.
,
1999
, “
Templates and Anchors: Neuromechanical Hypotheses of Legged Locomotion on Land
,”
J. Exp. Biol.
,
202
(
23
), pp.
3325
3332
.10.1242/jeb.202.23.3325
24.
Bledt
,
G.
,
Powell
,
M. J.
,
Katz
,
B.
,
Di Carlo
,
J.
,
Wensing
,
P. M.
, and
Kim
,
S.
,
2018
, “
MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Madrid, Spain, Oct. 1–5, pp.
2245
2252
.10.1109/IROS.2018.8593885
25.
Chignoli
,
M.
, and
Wensing
,
P. M.
,
2020
, “
Variational-Based Optimal Control of Underactuated Balancing for Dynamic Quadrupeds
,”
IEEE Access
,
8
, pp.
49785
49797
.10.1109/ACCESS.2020.2980446
26.
Ding
,
Y.
,
Pandala
,
A.
,
Li
,
C.
,
Shin
,
Y.-H.
, and
Park
,
H.-W.
,
2021
, “
Representation-Free Model Predictive Control for Dynamic Motions in Quadrupeds
,”
IEEE Trans. Rob.
,
37
(
4
), pp.
1154
1171
.10.1109/TRO.2020.3046415
27.
Di Carlo
,
J.
,
Wensing
,
P. M.
,
Katz
,
B.
,
Bledt
,
G.
, and
Kim
,
S.
,
2018
, “
Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive Control
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Madrid, Spain, Oct. 1–5, pp.
1
9
.10.1109/IROS.2018.8594448
28.
Grandia
,
R.
,
Farshidian
,
F.
,
Dosovitskiy
,
A.
,
Ranftl
,
R.
, and
Hutter
,
M.
,
2019
, “
Frequency-Aware Model Predictive Control
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
1517
1524
.10.1109/LRA.2019.2895882
29.
Akbari Hamed
,
K.
,
Kim
,
J.
, and
Pandala
,
A.
,
2020
, “
Quadrupedal Locomotion Via Event-Based Predictive Control and QP-Based Virtual Constraints
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
4463
4470
.10.1109/LRA.2020.3001471
30.
Fawcett
,
R. T.
,
Pandala
,
A.
,
Kim
,
J.
, and
Akbari Hamed
,
K.
,
2021
, “
Real-Time Planning and Nonlinear Control for Quadrupedal Locomotion With Articulated Tails
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
7
), p.
071004
.10.1115/1.4049555
31.
Farshidian
,
F.
,
Neunert
,
M.
,
Winkler
,
A. W.
,
Rey
,
G.
, and
Buchli
,
J.
,
2017
, “
An Efficient Optimal Planning and Control Framework for Quadrupedal Locomotion
,” IEEE International Conference on Robotics and Automation (
ICRA
), Singapore, May 29–June 3, pp.
93
100
.10.1109/ICRA.2017.7989016
32.
Pandala
,
A.
,
Fawcett
,
R. T.
,
Rosolia
,
U.
,
Ames
,
A. D.
, and
Akbari Hamed
,
K.
,
2022
, “
Robust Predictive Control for Quadrupedal Locomotion: Learning to Close the Gap Between Reduced-and Full-Order Models
,”
IEEE Rob. Autom. Lett.
,
7
(
3
), pp.
6622
6629
.10.1109/LRA.2022.3176105
33.
Kajita
,
S.
, and
Tani
,
K.
,
1991
, “
Study of Dynamic Biped Locomotion on Rugged Terrain-Derivation and Application of the Linear Inverted Pendulum Mode
,”
IEEE International Conference on Robotics and Automation
, Sacramento, CA, Apr. 9–11, pp.
1405
1406
.10.1109/ROBOT.1991.131811
34.
Griffin
,
R. J.
,
Wiedebach
,
G.
,
Bertrand
,
S.
,
Leonessa
,
A.
, and
Pratt
,
J.
,
2017
, “
Walking Stabilization Using Step Timing and Location Adjustment on the Humanoid Robot, Atlas
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Vancouver, BC, Canada, Sept. 24–28, pp.
667
673
.10.1109/IROS.2017.8202223
35.
Englsberger
,
J.
,
Ott
,
C.
,
Roa
,
M. A.
,
Albu-Schäffer
,
A.
, and
Hirzinger
,
G.
,
2011
, “
Bipedal Walking Control Based on Capture Point Dynamics
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sept. 25–30, pp.
4420
4427
.10.1109/IROS.2011.6094435
36.
Gibson
,
G.
,
Dosunmu-Ogunbi
,
O.
,
Gong
,
Y.
, and
Grizzle
,
J.
,
2022
, “
Terrain-Adaptive, ALIP-Based Bipedal Locomotion Controller Via Model Predictive Control and Virtual Constraints
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Kyoto, Japan, Oct. 23–27, pp.
6724
6731
.10.1109/IROS47612.2022.9981969
37.
Raibert
,
M. H.
,
1986
,
Legged Robots That Balance
,
MIT Press
, Cambridge, MA.
38.
Holmes
,
P.
,
Full
,
R. J.
,
Koditschek
,
D.
, and
Guckenheimer
,
J.
,
2006
, “
The Dynamics of Legged Locomotion: Models, Analyses, and Challenges
,”
SIAM Rev.
,
48
(
2
), pp.
207
304
.10.1137/S0036144504445133
39.
Poulakakis
,
I.
, and
Grizzle
,
J.
,
2009
, “
The Spring Loaded Inverted Pendulum as the Hybrid Zero Dynamics of an Asymmetric Hopper
,”
Autom. Control, IEEE Trans.
,
54
(
8
), pp.
1779
1793
.10.1109/TAC.2009.2024565
40.
Li
,
Z.
,
Zeng
,
J.
,
Chen
,
S.
, and
Sreenath
,
K.
,
2023
, “
Autonomous Navigation of Underactuated Bipedal Robots in Height-Constrained Environments
,”
Int. J. Rob. Res.
,
42
(
8
), pp.
565
585
.10.1177/02783649231187670
41.
Xiong
,
X.
, and
Ames
,
A.
,
2022
, “
3-D Underactuated Bipedal Walking Via H-LIP Based Gait Synthesis and Stepping Stabilization
,”
IEEE Trans. Rob.
,
38
(
4
), pp.
2405
2425
.10.1109/TRO.2022.3150219
42.
Orin
,
D. E.
,
Goswami
,
A.
, and
Lee
,
S.-H.
,
2013
, “
Centroidal Dynamics of a Humanoid Robot
,”
Auton. Robots
,
35
(
2–3
), pp.
161
176
.10.1007/s10514-013-9341-4
43.
Kuindersma
,
S.
,
Deits
,
R.
,
Fallon
,
M.
,
Valenzuela
,
A.
,
Dai
,
H.
,
Permenter
,
F.
,
Koolen
,
T.
,
Marion
,
P.
, and
Tedrake
,
R.
,
2016
, “
Optimization-Based Locomotion Planning, Estimation, and Control Design for the Atlas Humanoid Robot
,”
Auton. Robots
,
40
(
3
), pp.
429
455
.10.1007/s10514-015-9479-3
44.
Choe
,
J.
,
Kim
,
J.-H.
,
Hong
,
S.
,
Lee
,
J.
, and
Park
,
H.-W.
,
2023
, “
Seamless Reaction Strategy for Bipedal Locomotion Exploiting Real-Time Nonlinear Model Predictive Control
,”
IEEE Rob. Autom. Lett.
,
8
(
8
), pp.
5031
5038
.10.1109/LRA.2023.3291273
45.
Hong
,
S.
,
Kim
,
J.-H.
, and
Park
,
H.-W.
,
2020
, “
Real-Time Constrained Nonlinear Model Predictive Control on so(3) for Dynamic Legged Locomotion
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Las Vegas, NV, Oct. 24–Jan. 24, pp.
3982
3989
.10.1109/IROS45743.2020.9341447
46.
Grandia
,
R.
,
Taylor
,
A. J.
,
Ames
,
A. D.
, and
Hutter
,
M.
,
2021
, “
Multi-Layered Safety for Legged Robots Via Control Barrier Functions and Model Predictive Control
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Xi'an, China, May 30–June 5, pp.
8352
8358
.10.1109/ICRA48506.2021.9561510
47.
Liao
,
Q.
,
Li
,
Z.
,
Thirugnanam
,
A.
,
Zeng
,
J.
, and
Sreenath
,
K.
,
2023
, “
Walking in Narrow Spaces: Safety-Critical Locomotion Control for Quadrupedal Robots With Duality-Based Optimization
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Detroit, MI, Oct. 1–5, pp.
2723
2730
.10.1109/IROS55552.2023.10341896
48.
Marcucci
,
T.
,
Petersen
,
M.
,
von Wrangel
,
D.
, and
Tedrake
,
R.
,
2023
, “
Motion Planning Around Obstacles With Convex Optimization
,”
Sci. Rob.
,
8
(
84
). p.
eadf7843
.10.1126/scirobotics.adf7843
49.
Sánchez
,
I.
,
D'Jorge
,
A.
,
Raffo
,
G. V.
,
González
,
A. H.
, and
Ferramosca
,
A.
,
2021
, “
Nonlinear Model Predictive Path Following Controller With Obstacle Avoidance
,”
J. Intell. Rob. Syst.
,
102
(
1
), p.
16
.10.1007/s10846-021-01373-7
50.
Zhou
,
D.
,
Wang
,
Z.
,
Bandyopadhyay
,
S.
, and
Schwager
,
M.
,
2017
, “
Fast, on-Line Collision Avoidance for Dynamic Vehicles Using Buffered Voronoi Cells
,”
IEEE Rob. Autom. Lett.
,
2
(
2
), pp.
1047
1054
.10.1109/LRA.2017.2656241
51.
Raković
,
S. V.
,
Zhang
,
S.
,
Hao
,
Y.
,
Dai
,
L.
, and
Xia
,
Y.
,
2021
, “
Convex MPC for Exclusion Constraints
,”
Automatica
,
127
, p.
109502
.10.1016/j.automatica.2021.109502
52.
Kim
,
J.
,
Fawcett
,
R. T.
,
Kamidi
,
V. R.
,
Ames
,
A. D.
, and
Akbari Hamed
,
K.
,
2023
, “
Layered Control for Cooperative Locomotion of Two Quadrupedal Robots: Centralized and Distributed Approaches
,”
IEEE Trans. Rob.
,
39
(
6
), pp.
4728
4748
.10.1109/TRO.2023.3319896
53.
Siljak
,
D.
,
2011
,
Decentralized Control of Complex Systems
,
Dover Publications
, New York.
54.
Šiljak
,
D. D.
, and
Zečević
,
A.
,
2005
, “
Control of Large-Scale Systems: Beyond Decentralized Feedback
,”
Annu. Rev. Control
,
29
(
2
), pp.
169
179
.10.1016/j.arcontrol.2005.08.003
55.
Scattolini
,
R.
,
2009
, “
Architectures for Distributed and Hierarchical Model Predictive Control – A Review
,”
J. Process Control
,
19
(
5
), pp.
723
731
.10.1016/j.jprocont.2009.02.003
56.
Venkat
,
A. N.
,
Rawlings
,
J. B.
, and
Wright
,
S. J.
,
2005
, “
Stability and Optimality of Distributed Model Predictive Control
,”
Proceedings of the IEEE Conference on Decision and Control
, Seville, Spain, Dec. 15, pp.
6680
6685
.10.1109/CDC.2005.1583235
57.
Rawlings
,
J. B.
, and
Stewart
,
B. T.
,
2008
, “
Coordinating Multiple Optimization-Based Controllers: New Opportunities and Challenges
,”
J. Process Control
,
18
(
9
), pp.
839
845
.10.1016/j.jprocont.2008.06.005
58.
Richards
,
A.
, and
How
,
J. P.
,
2007
, “
Robust Distributed Model Predictive Control
,”
Int. J. Control
,
80
(
9
), pp.
1517
1531
.10.1080/00207170701491070
59.
Camponogara
,
E.
,
Jia
,
D.
,
Krogh
,
B. H.
, and
Talukdar
,
S.
,
2002
, “
Distributed Model Predictive Control
,”
IEEE Control Syst. Mag.
,
22
(
1
), pp.
44
52
.
60.
Keviczky
,
T.
,
Borrelli
,
F.
, and
Balas
,
G. J.
,
2006
, “
Decentralized Receding Horizon Control for Large Scale Dynamically Decoupled Systems
,”
Automatica
,
42
(
12
), pp.
2105
2115
.10.1016/j.automatica.2006.07.008
61.
Wang
,
C.
, and
Ong
,
C.-J.
,
2010
, “
Distributed Model Predictive Control of Dynamically Decoupled Systems With Coupled Cost
,”
Automatica
,
46
(
12
), pp.
2053
2058
.10.1016/j.automatica.2010.09.002
62.
Stewart
,
B. T.
,
Wright
,
S. J.
, and
Rawlings
,
J. B.
,
2011
, “
Cooperative Distributed Model Predictive Control for Nonlinear Systems
,”
J. Process Control
,
21
(
5
), pp.
698
704
.10.1016/j.jprocont.2010.11.004
63.
Abdelaal
,
M.
, and
Schön
,
S.
,
2019
, “
Distributed Nonlinear Model Predictive Control for Connected Vehicles Trajectory Tracking and Collision Avoidance With Ellipse Geometry
,”
Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019)
, Miami, FL, Sept. 16–20, pp.
2100
2111
.10.33012/2019.16911
64.
Mao
,
R.
, and
Dai
,
H.
,
2022
, “
Distributed Non-Convex Model Predictive Control for Non-Cooperative Collision Avoidance of Networked Differential Drive Mobile Robots
,”
IEEE Access
,
10
, pp.
52674
52685
.10.1109/ACCESS.2021.3134696
65.
Farina
,
M.
, and
Scattolini
,
R.
,
2012
, “
Distributed Predictive Control: A Non-Cooperative Algorithm With Neighbor-to-Neighbor Communication for Linear Systems
,”
Automatica
,
48
(
6
), pp.
1088
1096
.10.1016/j.automatica.2012.03.020
66.
Hu
,
J.
, and
Zheng
,
W. X.
,
2014
, “
Adaptive Tracking Control of Leader–Follower Systems With Unknown Dynamics and Partial Measurements
,”
Automatica
,
50
(
5
), pp.
1416
1423
.10.1016/j.automatica.2014.02.037
67.
Zhao
,
S.
,
2018
, “
Affine Formation Maneuver Control of Multiagent Systems
,”
IEEE Trans. Autom. Control
,
63
(
12
), pp.
4140
4155
.10.1109/TAC.2018.2798805
68.
Cucker
,
F.
, and
Smale
,
S.
,
2007
, “
Emergent Behavior in Flocks
,”
IEEE Trans. Autom. Control
,
52
(
5
), pp.
852
862
.10.1109/TAC.2007.895842
69.
Beaver
,
L. E.
,
Kroninger
,
C.
, and
Malikopoulos
,
A. A.
,
2020
, “
An Optimal Control Approach to Flocking
,” American Control Conference
(ACC)
, Denver, CO, July 1–3, pp.
683
688
.10.23919/ACC45564.2020.9147311
70.
Sun
,
J.
,
Tang
,
J.
, and
Lao
,
S.
,
2017
, “
Collision Avoidance for Cooperative UAVs With Optimized Artificial Potential Field Algorithm
,”
IEEE Access
,
5
, pp.
18382
18390
.10.1109/ACCESS.2017.2746752
71.
Pan
,
Z.
,
Li
,
D.
,
Yang
,
K.
, and
Deng
,
H.
,
2019
, “
Multi-Robot Obstacle Avoidance Based on the Improved Artificial Potential Field and PID Adaptive Tracking Control Algorithm
,”
Robotica
,
37
(
11
), pp.
1883
1903
.10.1017/S026357471900033X
72.
Wang
,
L.
,
Ames
,
A. D.
, and
Egerstedt
,
M.
,
2017
, “
Safety Barrier Certificates for Collisions-Free Multirobot Systems
,”
IEEE Trans. Rob.
,
33
(
3
), pp.
661
674
.10.1109/TRO.2017.2659727
73.
Pickem
,
D.
,
Glotfelter
,
P.
,
Wang
,
L.
,
Mote
,
M.
,
Ames
,
A.
,
Feron
,
E.
, and
Egerstedt
,
M.
,
2017
, “
The Robotarium: A Remotely Accessible Swarm Robotics Research Testbed
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Singapore, May 29–June 3, pp.
1699
1706
.10.1109/ICRA.2017.7989200
74.
Thirugnanam
,
A.
,
Zeng
,
J.
, and
Sreenath
,
K.
,
2023
, “
Nonsmooth Control Barrier Functions for Obstacle Avoidance Between Convex Regions
,” arXiv:2306.13259.
75.
Fiorini
,
P.
, and
Shiller
,
Z.
,
1998
, “
Motion Planning in Dynamic Environments Using Velocity Obstacles
,”
Int. J. Rob. Res.
,
17
(
7
), pp.
760
772
.10.1177/027836499801700706
76.
van den Berg
,
J.
,
Lin
,
M.
, and
Manocha
,
D.
,
2008
, “
Reciprocal Velocity Obstacles for Real-Time Multi-Agent Navigation
,”
IEEE International Conference on Robotics and Automation
, Pasadena, CA, May 19–23, pp.
1928
1935
.10.1109/ROBOT.2008.4543489
77.
van den Berg
,
J.
,
Snape
,
J.
,
Guy
,
S. J.
, and
Manocha
,
D.
,
2011
, “
Reciprocal Collision Avoidance With Acceleration-Velocity Obstacles
,”
IEEE International Conference on Robotics and Automation
, Shanghai, China, May 9–13, pp.
3475
3482
.10.1109/ICRA.2011.5980408
78.
Snape
,
J.
,
van den Berg
,
J.
,
Guy
,
S. J.
, and
Manocha
,
D.
,
2009
, “
Independent Navigation of Multiple Mobile Robots With Hybrid Reciprocal Velocity Obstacles
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, St. Louis, MO, Oct. 10–15, pp.
5917
5922
.10.1109/IROS.2009.5354821
79.
Peasgood
,
M.
,
Clark
,
C. M.
, and
McPhee
,
J.
,
2008
, “
A Complete and Scalable Strategy for Coordinating Multiple Robots Within Roadmaps
,”
IEEE Trans. Rob.
,
24
(
2
), pp.
283
292
.10.1109/TRO.2008.918056
80.
Solovey
,
K.
,
Salzman
,
O.
, and
Halperin
,
D.
,
2016
, “
Finding a Needle in an Exponential Haystack: Discrete RRT for Exploration of Implicit Roadmaps in Multi-Robot Motion Planning
,”
Int. J. Rob. Res.
,
35
(
5
), pp.
501
513
.10.1177/0278364915615688
81.
Yan
,
Z.
,
Jouandeau
,
N.
, and
Cherif
,
A. A.
,
2013
,
ACS-PRM: Adaptive Cross Sampling Based Probabilistic Roadmap for Multi-Robot Motion Planning
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
843
851
.
82.
Fawcett
,
R. T.
,
Amanzadeh
,
L.
,
Kim
,
J.
,
Ames
,
A. D.
, and
Akbari Hamed
,
K.
,
2023
, “
Distributed Data-Driven Predictive Control for Multi-Agent Collaborative Legged Locomotion
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), London, UK, May 29–June 2, pp.
9924
9930
.10.1109/ICRA48891.2023.10160914
83.
Fawcett
,
R. T.
,
Ames
,
A. D.
, and
Akbari Hamed
,
K.
,
2023
, “
Distributed Planning of Collaborative Locomotion: A Physics-Based and Data-Driven Approach
,”
IEEE Access
,
11
, pp.
128369
128382
.10.1109/ACCESS.2023.3332820
84.
Yang
,
C.
,
Sue
,
G. N.
,
Li
,
Z.
,
Yang
,
L.
,
Shen
,
H.
,
Chi
,
Y.
,
Rai
,
A.
,
Zeng
,
J.
, and
Sreenath
,
K.
,
2022
, “
Collaborative Navigation and Manipulation of a Cable-Towed Load by Multiple Quadrupedal Robots
,”
IEEE Rob. Autom. Lett.
,
7
(
4
), pp.
10041
10048
.10.1109/LRA.2022.3191170
85.
Kim
,
J.
, and
Akbari Hamed
,
K.
,
2022
, “
Cooperative Locomotion Via Supervisory Predictive Control and Distributed Nonlinear Controllers
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
3
), p.
031005
.10.1115/1.4052917
86.
Grandia
,
R.
,
Jenelten
,
F.
,
Yang
,
S.
,
Farshidian
,
F.
, and
Hutter
,
M.
,
2023
, “
Perceptive Locomotion Through Nonlinear Model-Predictive Control
,”
IEEE Trans. Rob.
,
39
(
5
), pp.
3402
3421
.10.1109/TRO.2023.3275384
87.
Ames
,
A. D.
,
Xu
,
X.
,
Grizzle
,
J. W.
, and
Tabuada
,
P.
,
2017
, “
Control Barrier Function Based Quadratic Programs for Safety Critical Systems
,”
IEEE Trans. Autom. Control
,
62
(
8
), pp.
3861
3876
.10.1109/TAC.2016.2638961
88.
Nguyen
,
Q.
, and
Sreenath
,
K.
,
2016
, “
Exponential Control Barrier Functions for Enforcing High Relative-Degree Safety-Critical Constraints
,” American Control Conference (
ACC
), Boston, MA, July 6–8, pp.
322
328
.10.1109/ACC.2016.7524935
89.
Nguyen
,
Q.
,
Hereid
,
A.
,
Grizzle
,
J. W.
,
Ames
,
A. D.
, and
Sreenath
,
K.
,
2016
, “
3D Dynamic Walking on Stepping Stones With Control Barrier Functions
,” IEEE Conference on Decision and Control (
CDC
), Las Vegas, NV, Dec. 12–14, pp.
827
834
.10.1109/CDC.2016.7798370
90.
Spong
,
M.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2005
,
Robot Modeling and Control
,
Wiley
, Hoboken, NJ.
91.
Jones
,
J. E.
,
1924
, “
On the Determination of Molecular Fields. i. From the Variation of the Viscosity of a Gas With Temperature
,”
Proc. R. Soc. A
,
106
, pp.
441
462
.10.1098/rspa.1924.0081
92.
Barraquand
,
J.
, and
Latombe
,
J.-C.
,
1991
, “
Robot Motion Planning: A Distributed Representation Approach
,”
Int. J. Rob. Res.
,
10
(
6
), pp.
628
649
.10.1177/027836499101000604
93.
Chiang
,
H.-T.
,
Malone
,
N.
,
Lesser
,
K.
,
Oishi
,
M.
, and
Tapia
,
L.
,
2015
, “
Path-Guided Artificial Potential Fields With Stochastic Reachable Sets for Motion Planning in Highly Dynamic Environments
,” IEEE International Conference on Robotics and Automation (
ICRA
), Seattle, WA, May 26–30, pp.
2347
2354
.10.1109/ICRA.2015.7139511
94.
Wallar
,
A.
, and
Plaku
,
E.
,
2014
, “
Path Planning for Swarms by Combining Probabilistic Roadmaps and Potential Fields
,”
Towards Autonomous Robotic Systems
,
A.
Natraj
,
S.
Cameron
,
C.
Melhuish
, and
M.
Witkowski
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
417
428
.
95.
Vukobratović
,
M.
,
Borovac
,
B.
, and
Surla
,
D.
,
1990
,
Dynamics of Biped Locomotion
,
Springer
, Berlin, Germany.
96.
Borrelli
,
F.
,
Bemporad
,
A.
, and
Morari
,
M.
,
2017
,
Predictive Control for Linear and Hybrid Systems
,
Cambridge University Press
, Cambridge, UK.
97.
Fawcett
,
R. T.
,
Pandala
,
A.
,
Ames
,
A. D.
, and
Akbari Hamed
,
K.
,
2022
, “
Robust Stabilization of Periodic Gaits for Quadrupedal Locomotion Via QP-Based Virtual Constraint Controllers
,”
IEEE Control Syst. Lett.
,
6
, pp.
1736
1741
.10.1109/LCSYS.2021.3133198
98.
YouTube, 2024, “
A Distributed Layered Planning and Control Algorithm for Teams of Quadrupedal Robots
,” YouTube, San Bruno, CA, accessed Oct. 7, 2024, https://youtu.be/hwEhA7JCXAU
99.
Hwangbo
,
J.
,
Lee
,
J.
, and
Hutter
,
M.
,
2018
, “
Per-Contact Iteration Method for Solving Contact Dynamics
,”
IEEE Rob. Autom. Lett.
,
3
(
2
), pp.
895
902
.10.1109/LRA.2018.2792536
100.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2002
, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM J. Optim.
,
12
(
4
), pp.
979
1006
.10.1137/S1052623499350013
101.
Pandala
,
A. G.
,
Ding
,
Y.
, and
Park
,
H.
,
2019
, “
qpSWIFT: A Real-Time Sparse Quadratic Program Solver for Robotic Applications
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
3355
3362
.10.1109/LRA.2019.2926664
102.
Przybyła
,
M.
, and
Milesi
,
A.
,
2021
, “
obstacle_detector
,” GitHub, Inc., San Fransico, accessed Apr. 7, 2023, https://github.com/tysik/obstacle_detector
103.
Huang
,
A. S.
,
Olson
,
E.
, and
Moore
,
D. C.
,
2010
, “
LCM: Lightweight Communications and Marshalling
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Taipei, Taiwan, Oct. 18–22, pp.
4057
4062
.10.1109/IROS.2010.5649358
104.
Fawcett
,
R. T.
,
Afsari
,
K.
,
Ames
,
A. D.
, and
Akbari Hamed
,
K.
,
2022
, “
Toward a Data-Driven Template Model for Quadrupedal Locomotion
,”
IEEE Rob. Autom. Lett.
,
7
(
3
), pp.
7636
7643
.10.1109/LRA.2022.3184007
You do not currently have access to this content.